CA 2E

Building Access Paths
Release 8.7

This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred to
as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2014 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
m Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs

Documentation Changes

The following documentation updates have been made since the last release of this
documentation.

m Allow SQL Record Level Access
m YSQLFMT (see page 46)

m Refresh Action Diagram Statements
m YRFSACT (see page 43)

m Allow RLA Access over DDL Database

m Access Path Auxiliaries (see page 24)

m Understanding Generator Types (see page 25)

m Model Values (see page 25)

m Creating an SQL Environment (see page 30)

m Specifying Generation Mode (see page 30)

m Changing the Generation Mode at the Access Path Level (see page 31)
m YDBFGEN (see page 37)

m Modifying Access Path Details (see page 67)

m Specifying Generation Mode (see page 73)

m Copying an Access Path Generated with SQL or DDL (see page 74)

m For DDL Access Paths with *IMMED Maintenance (see page 96)

m Implementing (see page 109)
m Changing Compiler Overrides from DDS to SQL or DDL (see page 110)

m Identifying the Implementation Attributes (see page 110)

m For DDS Query (QRY) Access Paths (see page 95)

m Allow SQL/DDL generation without hard-coded schema name
m Model Values (see page 25)
m YSQLCOL (see page 45)
m Allow LVLCHK(*YES) for SQL/DDL indexes having RCDFMT keyword
m YLVLCHK (see page 40)
m YSQLFMT (see page 46)
®m YSQLFMT override
m YSQLFMT (see page 46)

Select/Omit criteria in DDL Index

Select/Omit in DDL Index (see page 89)

Using Select/Omit Maintenance (see page 124)

Meaningful Names for SQL/DDL

Model Values (see page 25)
YSQLVNM (see page 47)

Suppress *DDL generation for SPN/QRY

Identifying the Implementation Attributes (see page 110)

Option to generate RLA against DDL

Model Values (see page 25)
YSQLVNM (see page 47)
YDDLDBA (see page 37)

F7=Auxiliaries in the DDL Implementation

Access Path Auxiliaries (see page 24)

Editing Access Path Auxiliaries (see page 97)

IBM Limitation - File name is valid system name

Model Values (see page 25)
YSQLVNM (see page 47)
Edit File Details (see page 54)

Meaningful Names for SQL/DDL - Control Table vs Fields

YSQLVNM (see page 47)
YDDLDBA (see page 37)

DDL Limitation

Generating an Access Path (see page 112)

Identifying the Implementation Attributes (see page 110)

Contents

Chapter 1: Introduction to Access Paths 13
U0 1= T T T TP TP 13
(015 -t [o172 1 4[o] s H PP PPPPPPPPPPPRE 13
(O10] 01 (=1 | K3 ST SO U UPPPP ORI 14
[2C1 1 =Y I 1o {o] o 4 o - [o IR PSRRI 15
Acronyms and Terms Used iN this GUIAEeeeiiiiie ittt e e e tte e e st e e e et e e e eatae e e sabbeeeentaeeeeanaeas 15
FAYo] 0] 01/ 4 F S O PPNt 15
LY 1 L0 UUURRP 16
UNerstanding ACCESS PAtNSeiiiiiiieeiece ettt sttt st e bt e e s bt esat e e sabeesat e e sareesaeeesabeennees 17
Recognizing the Basic Properties 0f ACCESS Paths.....c...oiiiiiiiiiieeeeee et 17
IdEeNTifYiNg ACCESS PAth TYPES ..oeiiiiiiie ittt ettt e e et e e e et e e e s bt e e e e ataeeseasaaeesansaaeesntseaeessaeesnnsaeas 17
[N I o 1 L 5 N I Xl T X - d (OSSR 18
EXAIMPIES ..ttt sttt ettt et b e e bt s bt e bt e e bt e bt e e bt e e bt e e b et e nee e be e e nbe e bt e e saneenheeesareenes 18
UpPdate (UPD) ACCESS PAthccviiiiieciiecieeciee sttt ettt ettt e st e e st e e s teestte e st e e ssaeesaseessbeesaseesnseesaseessseesnsesnnes 18
T T 4 o 1= 3PS 19
RetrieVal (RTV) ACCESS PAth.......coc ittt ettt e ettt e e ettt e e e e tae e e s tb e e e e abeeeseasbaeesanbaaasentbeeeessaeesnnseeas 19
T2 o] LT SR PUUUOt 20
Resequence (RSQ) ACCESS PAthc.iicuieiiieeiee ettt ettt e et e e te e et e e saee e baeesae e steessseessseesnseennas 20
INEW TOPIC 1uiiiiiteieeeeereiitte e et e e e sttt e e e e e ssatabeeeeeessesaaabaaaeeessasssbaeaeeessassssanaeeessasnsssssaaeessssnssasaaaseessnssssenaeesssnnssnsens 20
QUETY (QRY) ACCESS PAtN.....ueiiiiiiiie ettt ettt e et e e e et e e e s abe e e e eabaeeeestaeesssaaaeentbeeeessaeeeasbeseeansseeeannes 21
SPAN (SPN) ACCESS Path ...ttt e e et e e e et e e e sbb e e e e abeeeseaaaeeestbeeeeaabaeseensaaaessreeanns 22
T2] o] LU PURUOt 22
CharacteristiCs Of ACCESS Pathisuiiiiiiiiiiii et sttt be e s bt e et e s bae e saeeebeeenneeeane 22
[N T g 1Yo ool Y - | LSS 23
Recognizing AcCess Path COMPONENTS ...cciiiiiiiiiiiee e e e et e e e e e e st ae e e e e e eeseantaaaeeeeeesensstranaeessensnnrnes 23
ACCESS Path DETAIIS. ...ceiiiiiieiiiee ettt st bt e e s b bt e e s s bb e e s eabe e e sb bt e e e aabaeeeenbaeesaaeeeeas 23
ACCESS Path FOIMat ENTIIESeeiiiiieeiiiiite ettt ettt e ettt e sttt e e sttt e e s abe e e seabbeeesabbeeessabaeessasbaeesssaeenns 23
ACCESS Path REIGLIONSeiiuiiiiieeiteee ettt st s e st e e sat e e sabeesabeesabeesabeesabeesateesabeesareess 23
ACCESS Path AUXIITAITES ..eeuveieieeiieee ettt st sat e st e e st e st e e sat e e sabeesabeesabeesabeesabeesaseesareesareesn 24
INAFTATIVE TOXT. .. eeeetiiiie ettt ettt e ettt et e e e et e b et et e e e seaaa b et e teeeseaaan b et e e e e e e e nnbe bt e eeesa s nnbabeeeeeeesaanssnaeeaeeesanannraes 24
UNderstanding GENEIAtOr TYPES .oeeiiieiiiiiiieee e e e ettt et e e e eecittteeeeeeeesittaeeeaaeeesaatasaeaasaesassaaseasaessaaasstaessaesseassstraneaassennns 25
IMOAEI VAIUBS. ..ottt sttt ettt st e st e st e s abe e e bt e st e e e bt e s bt e e bt e s abeeeaste e bt e e sabeebeeesnbeensseennseeneas 25
(@ =T o =4 0= = [0 T3S 28
WA | o Tor: 1o =8 1V [4 1= 28
Allocating a Source Member Name for an Access Pathoeeiiiiiiiiiiec et 28
CoNrOlING AUXIHAIY NAMES ...eviiiiie ittt e e ee e e e e e e e etb e e e e e e e e seaaataeseaaeseassbaeseaaeseaanstasseaseeesaansrasneaens 29
Creating an SQL ENVIFONMENT ...ooi ittt ettt e e e e st e e e e e s e s e e e e e e s e sennnnnnneeens 30

Contents 7

SPECITYING GENEIATION IMOUE.....cciiieeieiiee ettt ettt e e s st e e e sttt e e s sabeeesaaseeeesateeeennbaeesnsseeessssaeenns 30

Changing the Generation Mode at the Access Path LEVEccc.eoiiiiiiiiiiiiiiieeceee e 31
(O =T T=d o T= o o o] o T =T ol @771 T [T SRS 32
Chapter 2: Setting Default Options for Your Functions 33
Model Values Used in BUIldiNG FUNCLIONSuiiiiiiiieceiiis e cteee et e te e s evee e et e e s ssaaeesabeeeasntaeesensseeesnseeaesssseeennnns 33

YABRIN PT ettt ettt ettt e e e s et e et e e e s e r e e e e e e e s a b e e e e et e e e sa e e et et e e e s e e r e e et et e s e e R en et eeeeeaaannrereeeeesaannreee 34

YACTOND .ttt ettt ettt e e e e ettt e e e e e e a et e e e e e e e s abe et eeeeeesaaas b e eeeeeesaaanbbeeeeeesasasbebeaaeeeesaansnbbeaeeeesannnnrees 34

YACTEUN Lttt ettt et et et et et ettt et et et et et et et et et et et et et et et et et et etetatetareretererererererererereranens 34

YACTSYM ottt ettt et atatatetaeeret et et eteteretereteraranens 34

YACTUPD .ttt ettt ettt e e e e ettt et e e e s e s et e e e e e e e s aa b e e et eee e e s a s e e et et e e e saannr e e e eeeesaansbeneeeeesesansnreneeeeesannnneee 35

YALCVINIM L.ttt ettt ettt e ettt e e e e e et e e e e e e e s s b e e et e e e e e san s e e et e teeesaann b e e e teee s e ansbeneeeeeeesansnrneeeeeesannnnnnee 35

YBINDDIR ...ttt eraranans 35

YONFV AL ettt ettt et ettt etetaeatatatatetaterererereretererererereranens 35

YCOPYIMISG .. ettt ettt e e et et aranans 35

YCRTENV ettt ettt ettt e e e e ettt e e e e e bt ettt e e e e e s s b e et e e e e e e s sn e b et e teeeaaaneb e e e teeesaaansbaneeeaeeesannsnreeeeeeesannnnneee 36

| (018 7Y =5 [PPSO PPPPPPRTTPPOt 36

YCUAPIMT ettt ettt ettt ettt etaeetatatatetarererererererererererereranens 36

YCOUTOFF ..ttt ettt et et ettt et atatatetareretererererererererereranens 37

Y D AT FIMIT ettt ettt ettt e e e e ettt et e e e e e aa b e et e e e e e e s nbe e et e e e e e saane s et e e e e e saaneb e e et e e e e e nnbe b e e eaeeeaaanbnreeeeeeesaannreee 37

YDATGEN ...ttt ettt ettt e e e e ettt et e e e e e a b e bt eeee e e s abe e et e e e e e saane s et e eeeesaanebe e e e eeesaannbebeeeeeeesanbnreeeeeeesaannreee 37

YDBEFGEN ...ttt ettt ettt e e ettt e e e e e a bt e e e e e e e s s be e et et e e e saaae b et e eeee e e nnb e e e e eeeee e s b eeeeeeeeeaa e rnrreeeeeesaannraee 37

YDDLDBA .ttt ettt et e e e e s et et e et e e e et e e e s e s r et e e e e e se s ar et et e e e sennnnaee 37

D I O 1 PP PO OO PPPPPPPRPPON 38

0N I 5 [PP PSP U PP UPPPPPPTRRPPOt 38

YERRRTIN . ettt ettt ettt e e e e ettt et e e e e e b b et e e e e e e e s aa b e et e e e e e e s a s e e e eeeeeesaanebeeeeeeesaaannbebeeeaeeesansnbeeeeeeesannnreee 38

YEXCENV .ttt ettt ettt e e ettt et e e e e e b be et e e e e e e s s b e et e e e e e e s ans s et e eeeeaaaneb e e e eeee s e annbebeeeaeeesanbnbeeeeeeesaannreee 38

YGENCIMT ettt ettt et e s e s et et e e et r et et e e e se b e e et e e e s e s rabeteeese s nraraeeeesesennnnnee 39

YGENHLP ettt et e e e s et et e e e s b e e et e e et e e r et e e e e e s ar et e e e e e s e rnraee 39

YGENRDDB ...ttt ettt ettt et e ettt e e e e e e be et e e e e e e s e a bbb e e e e e e e saaae b et e e e e e ae e nnbeeeeeeeeeaaanbeeeeeeeeeaaanarreeeeeesaannnreee 39

YHLLGEN .ttt ettt ettt et ettt e e e e e et e et e e e e e e s aabe et e eeeaesauans b et e eeeeaaaannbeeeeeee s e anbebeeeeeeesaansnrbeeeeeesaannnrees 39

YHLLVINIM ettt ettt e e e e e st et e e e s et et e s e s nr e e et e e e s e s reneeeeeeesamrnneteeesesannnnnee 39

YHLPCSR ettt ettt e e e e e s et e e e e e e s r et et e e e s e e et et e s e e R e e et e e e e e se e areeeeeeesennnneee 40

B 8] o PP OPPPUTOOPPPPPPRTRPPOt 40

YLVLCHK ettt ettt ettt et ettt e e e e e ettt e e e e e e s aabe e et e e e e e s ane b e eeeeee s e annbaeeeeee e e s anbebeeeeeeesaanbnrbeeeeeesaannnreee 40

YINPTHLP ..ttt e et et et et et et et et et e e et et e e e s e e e s et e s et e s e s e s et esesesesenesanens 41

YINLLUPD ..ttt e et e e e e e s et e e e s e s r et et e e e s m s r et et e e e s e s s reneeeeeeesanrnneeeeeeesennnnnee 41

Y OB P X ettt e e e e e e et e e e st et e e e se e r e e et e e e s e s b r e e e re e e e e s e rrereeeeeseannnnee 41

YPIMITGEN ...ttt e e e e e s e e et e e e s et et e s e s nr e e et e e e s e s reneeeeeeesanrnneeeeeeesannnnnee 42

YPIMITIMISE .ttt ettt ettt ettt e e e e e be b et e e e e e s e abe b et eeeeesaaasbeeeeeeeaaaannbeeeeeeesaaanbebeeeaeeesaansnrbeaeeeesaannnrees 42

YPUTOWR .ttt ettt et ettt e e e e et ettt e e e e e s e abe e e e e e e e e saaan b e eeeeeeeaaannbaeeeeeesasanbebeeeeeeesaansnneeeeeeesaannnrees 42

8 Building Access Paths

YRPAHSP ...ttt e s a e s bt e s e e et a e e e s a e e e s b e e e s bne e e sraeeeeas 43

(Y Ol LNt 43
YRPAHSZ ...ttt ettt et stt e e s a e s at e e s a e e s ab e e sa b e e sat e e s a b e e sate e sa b e e s ate e sa b e e nate e sa b e e eabeesabeeeabeesabeeeabeesateenaree s 43
YRPASGN ..ottt ettt ettt st s e e st e sttt e s a e e s ate e sabeesateesabeesateesabeesabeesa b e e nateesa b e e eateesa b e e nabeesa b e e eabeesabeeeabeesabeenaree s 43
YSAAFRMT .ttt ettt ettt ettt sttt e sttt e sh b e e sae e e sateesateesabeesabeesabeesa b e e sabeenabeesa b e e nateesa b e e eab e e na b e e nateenh b e e eabeesabeenabeesteenaree s 44
R] 1 I8 1N IRt 44
] 1) 2] 2 IRt 44
YSINDIMISG ..ciiteiiieeitte ettt ettt ettt st e sttt e sh b e e sate e sateesaee e sabeesateesabeesabeesabeesabeesabeenaseesabeesaseesabeenabeesabeesabeesabaesateesabeenaree s 45
| 101 T T USSR 45
B 410 LI Y PSP 46
B 41 L XU 46
YSQLVINIM ittt e e ettt e e e e e e et e ta e e e e e e e e e tau e eeeeeeaatauaaseeeeeaasasaanaeeneessnnnnsseeeeenssnaneeeeenenssnnnseeeeennsnnnnn 47
O TR - [O PPSRN 48
R ATAT] N L] =1 N T PSPPSR 48
User INterface Manager (UIM) ...c.ueeceeeiieeeieecteeetee st e et e steeete e steesateesateessseesateessseessseessseesssaessseessseenssessnsesnnees 48
ALYV Lo LT Y 2T o =T SRR 49
ChanginNg IMOTEI ValUES......coouuiiiiieeiiieite ettt ettt a e s bt be e s bt e bt e s bt e e st e s beeesaeesbeeenneesabeeeneenane 49
(S0 oot oo T =Y O OO UPSUPP 49
IMMOEI LEVEL ...ttt sttt sttt s e st e st e s be e sabeeeabeesabe e e b aesabe e e beesabeeeasbeeabeesbaeenbaeenaseensseenaseenseas 50
(@ T aT=4T o T= 4= TN o Ul o Yot d o o TN E= o' L= SRR 50
FUNCEION KEY DEFAUILS ...eiiieiiii ittt e ettt e e sttt e e e sttt e s e ete e e saaee e e s baeessnseeeesasseeeentaeesanseeessnseaesnnsseeennnns 51
Chapter 3: Adding Access Paths 53
(213 {0 =10 o 11 o V-S5SSR 53
Bt FilE DEAIIS .. eeeeeeiiee ettt ettt ettt ettt e st e e e sa bt e e s e abbe e e sbb e e e e s beeesaabeeeesasbeeeeanbteesenbeeesanrteeeanbaaeeenne 54
PV o [T Y= T W AN ol T 2= f o U PURRRt 55
Adding a Physical (PHY) ACCESS PAth.......ccocuiiiiiiiie ettt e e st e e e eate e e eeatae e e satb e e e e ataeeeensaaeessreeaans 56
Adding a Resequence (RSQ) ACCESS PAthcociiiiiieiie ettt ettt et e s te e e e e ste e eabeesnraeenreean 56
Adding @ QUEry (QRY) ACCESS Path......ccvciiieiiiiiiiic ittt ettt et e e st e eaeebe v e etaeebeeebe e beebeenaesnneees 57
Adding @ SPan (SPN) ACCESS Path......ccuuiiiiiiii ettt et e e e e ate e e e eate e e etreeeeeabaeeeeasaeessreaaans 58
Chapter 4: Modifying Access Paths 61
[21] oY oI o TU I = 1T o P UURR R UPURRRRNS 61
21 oY ol |V [oTo L1 V7T oY= P UUU R URURRRRINS 62
Navigational TEChNIQUES @Nd AIAScceceiiiiciiee et e e e st e e e s e e s eante e e snseeeesnsteeeenseeesnnnneas 62
Y XUy o] aaF= YA Tol Yo [B0 o] d o Yo -3 S 62
Changing the AULO Add SEEEINGcceeiiiii ettt e e e e e s e e e st e e e s ste e e snseeeesssaeesensseeessnseeeesnsseennnnes 63
TrimMMING @N ACCESS PAN ..oeeiiiiieeeee et e e e e et re e e e e e e s tb b e e e e e e e e seeaataeeeeaesennstaeaeaaesannes 64
Virtualizing an ACCESS Path.........oiiiiiiii e et e e e e e st e e e e e e e e st b baaeeeaeeseansataeeeaeesennnrees 64
(ool T gV L ool Ty - o P 64
=T a0 oTo T =1 Y oY <3S 65

Contents 9

T =T 1T 0] o Mo Yol RN 65

Displaying Usages for ACCESS Pathis.........co ittt sttt st sbe e s nees 65
Building Distributed Relational Database APPliCatioNSccuiieeiiiie it e e e e e e e s rare e e e s treeeeaens 66
SPECIHTYING DISTIHDULEA FIlES ...veiiiiiieeeiie ettt e e e e e e e s e e e e at e e e s ate e e e s tbeeeessaeessnseeeesnsseeennnes 66
MOodifying ACCESS PAth DETAIISeeeeiuiiieieiiii ettt e e et e e e re e e st e e e e st ta e e esaseaeessaeeeeantaeeeessseesnseeeaansseeannnns 67
Editing ACCESS Path DELAIlSeeeuiiiiiieitiee ettt ettt s sbe e e sareenees 69
Specifying Unique/Duplicate Key Retrieval SEQUENCEcuccvieiieeiieeie ettt ettt ettt et b e b e s eas 70
Specifying AcCess Path IMaiNtENANCEc.uvii it e e et e e e e stte e e s aae e e e s s taeesesaeeesnseaeesnsseaennnes 71
Specifying Alternate Collating SEQUENCEcoiviiiieiiiee et eerre e eetee e e st e e e e stte e e e aae e e e tbeeeestaeessnseeeesnsreaesnnes 72
SPECITYING SEIECT/OMIt CrILEIIA .evvirvereietieeeeieieriee sttt st et et et e te et saeste et e e e tesaebesaeebesseeseensesessessessesseensensensen 72
SPECIfYiNg GENEIatioN IMOTE.ciiiiiiiii et ettt e be e s b e s bt e s bt e e bt e sbeeesneeebeeenaeenane 73
Y@ LT oL 0 A [11 PSPPI 74
Copying an Access Path Generated With SQL OF DD L........uciiiiiieeeiiiie et eeciiee e eetee e e vre e s e saaae e seaaae e e sabreaeeanes 74
Changing Source Member Text aNd NAMES........ccccciuiiiiiiiee e ettt erree e sre e e eette e e sebaeeeetbeeeenssaeesssseeeesnsreeeanes 75
Modifying AcCeSS Path FOIMat ENTriES.ciiruii ittt ettt ettt ettt et sb et e sbee s bt e st e e bt e e saneenees 75
Identifying ACCesS Path FOrMat TEXt.....c.eoiiiiiiieiiiieiee ettt sttt sbe e e saneenees 75
Identifying Access Path FOrmMat KEYScooiiiiiiiiiiiiie ettt ettt sbe e e s neas 75
ChangiNg the K@Y SEOUENCEuvee ettt ctee ettt e e ettt e e et e e e st e e e ette e e seabaeeesabaeaeessaeesssaaeaassbesesnssaeesasseeeesnsreeeases

Editing Access Path Format Entries

Editing Physical File Format Entries

Altering Field Sequence or Implementation NamE.........cccuiiiiiiieiiiiiee et eere e s e e e stae e e snae e e snaeeeens 78
MOodifying ACCESS Path REIGTIONS. ...c...iiiiieiiie ettt ee e e e et e e e e e tte e e eebaee e stbeeeessbbeeeestaeesaaraeaeansseaannnns 79
Understanding REQUIred REIALIONScciiii i et e e e e e s ettt e e e e e s eaaeta e e e e e e sesnnsbaaeeeeeennns 79
Fi¥e [o [T oY= ST T oY a T o I TN o1 L= PR PURROt 80
Editing ACCESS Path REIGTIONS....cciiiiiieiciet ettt e et e e st e e e st e e e eaatee e senbeeeesnsteeeenseeesnnnneas 81
MOdIfYiNg VirtUal FIeld ENTIIESveieeiiiieeeiii ettt ee st e e ettt e st e e st e e e st eeesaeeee e sasaeeeesnsseesesseeesanseeeennssesennnes 82
Understanding Access Path Virtual Field ENtriesc.uuiiiiieiiieiieee ettt e e e e s e ae e e e e e e 82
Identifying Relations With VIrtual FIelASccoiuiiiieiiii et ettt e e e e e e tr e e e earae e eaaaeas 83
Specifying File and Access Path ReIatioNsccuuiii ittt e e tre e e st e e e e ba e e e e aaae e eareeeens 84
(o Tha] Y=V (U | =Y Fo I o L= PSS 85
Tailoring Virtual Fields for ACCESS Paths.......cc.uiiiiuiieeeiiie ettt e e e e e e e e e saeee e e s nr e e e e nteeeennneeas 86
ChOOSING SEIECT/OMIt CrILEITA . .ccvveeetiieereeeetee ettt et e eetee et e eeteeeeteeeeteeeebeeesteeeeteeeeseeebeseesseebeseasssentssensseensssensseensseenseeenss 86
UNerstanding SEIECT/O MUt ..cc.veiiveeeieecre ettt ettt e s e e et e e sbeeetre e sabeeeaaeesabeeetseesabeeesseesareensreesareenanes 87
Yo TTol 1 A =Y =1 1=T o1 o o SRR 88
Yo=Yl 1A =3 o o Te [o o L3 SRR 89
Y= C=Ye 040 Lo AT T 0 D1 e =3 TR 89
Changing a Referenced ACCESS Path........ ..o e e e e s et e e e e e s e et aa e e e e e e sennraareeeaas 91
o e ol o o] o) fl W] o Yot o] W AN Y F=d T 0 1= o PPNt 94
MOdifying ACCESS PAth AUXIIIAIIESviiiieiiiee ittt cce et ee et e e e e et e st e e e s e e e e saseeeesnaeeeasstaeesasseeessnseeeesnsseeennnes 94
Understanding ACCESS Path AUXIIIATIES ...ccccuveiiiceiiieiiiee et ee e eere e s e e e et e e senee e e e sntaeeeestaeeesnnaneesnreeaans 95
For DDS Query (QRY) ACCESS PAthsccuiiiiiiiiieiiie ettt sttt s sate st s sba e s be e e s ate e bt e e sabeenaes 95
For SQL Access Paths with *IMMED IMaiNTE@NANCEcccuuievuieiiiiieiieeieeeste et e eseeetee e saeesae e ssae e sae e saaeessseesnaeennnas 95

10 Building Access Paths

For DDL Access Paths With ¥*IMMED MaiNt@NaNCEccciiiiiiiiiiiieee ettt ee e eeeeire e e e e e s sbare e e e e e e sssaarreeeeeesessanees 96

Editing ACCESS Path AUXITTAIIESeeiuiiieiieiiie ettt sttt et et esare e sne e e saneenneas 97
Chapter 5: Deleting Access Paths 99
Deleting @n ACCESS Pathc...oiiiiiieee et ettt e b e s bt e s et e e b et e s ae e e bt e st e e nne e e areennees 99
Determining the Usage of an ACCESS Pathooo ittt e st e e ate e e s are e e snreeeens 100
Chapter 6: Defining Arrays 101
(8T To [T e =T Lo [T Y= AN £ 1PN 102
Structuring Field Data USING AITAYS ...eeeccuiieiiiiieeeiiieeeeiteeeesitaeeesteeeeesateeesessaeeasatseseassasesssssaaeassseseanssseesassasesassesesnnes 102
PaSSING PAraMETEIS c...eeiiiiiiiiie ettt e et e s et s b e e e s e e e s et e s et e e s be e e s e n e e s nn e e e sanreeeeas 103

StOriNg Data BEEWEEN CallSoiuiiiiiiiieei ettt sttt st et s it bt e s n e e sat e e sareesar e e saneenaes 103
DEFINING @N ATTQY ...ttt ettt et sa e et e st e et e e st e e eubeesa bt e e abeesabeeeabeesabeeeabeesabeeeaseesabeeeaseesabeeenseesabaeanseenane 104
o [Lo T4 T o I AV 4 - 1Y PP UPSPPPNE 107

VIEWINE FUNCLION REFEIENCESciviiee ettt et e st e e e et e e e s tb e e e e e ataeeeetase e e abaaeesnsbeeeentaeesnnnaens 107

Changing the NAME Of @N AITAY ..couii ittt e et e st e s abee s bt e sabeesabeesaneesabeesaneens 108
DEIETING @N AITAY ...eiiitieiitieiitte ettt ettt e et e e st e e bt esa bt e s bt e sabeeeubeesabeeeaseesabeeeaseesabeeeabeesabeeeaseesabeeeabeesabeeenseesabaeanneenane 108
Chapter 7: Generating and Compiling 109
[T g o1 1= o =T o [T~ S 109

1 OS INAEX VEISUS CA 2E INABX c..uteiieiiiieiiiet ettt ettt ettt e sttt e e ettt e st e e e sabe e e s s abeeesbbteeesabeeessnbeeesansteessabeeesnnnns 109

YL adl g T (e IO @]) A Te] o IRt 109

Changing Compiler Overrides from DDS t0 SQL OF DDL.....cccocuiiiieiiiieeeiiee e eiiee e et e e eearee e streeeesareeeeearaeesareaaens 110

Identifying the Implementation AttrIDULEScocciii i e e s e e et a e e e ennneas 110

GeNErating an ACCESS Path.....ci it e e e st e e et e e e bae e e et b e e e e e ntaeeeeateeeenreeeenn 112
Chapter 8: Documenting Access Paths 115
DOoCUMENTING AN ACCESS PAth ... e e e e e e st e e e e ate e e seaseeeessteeeenstaeesenseeeesnnseeeans 115

Creating the DOCUMENEATION. . ..ciii e e e e e e e e e s e st ta e e e e e e sesaataereeaeeesasbaaaeaaeeesansrareeaens 116
Chapter 9: Tailoring for Performance 117
Considering the Types of Data in the PRYSICAl FIlEiiciiiiiiiiiiiciie ettt e st saaee s 118
Minimizing the NUMDEr Of ACLIVE INEXESeiiiiiiiiiiiiieeieesieeeee st eriee st e et este e s te e sbe e e beesbeeebeessbeeeseesbaeenseeenns 118

THE ACEIVE INABX ettt s e e bt e s bt e s bt e sabe e s bt e sabeesabeesabeesaseesabeesnbeesabeesnseesabaeenseesane 119

SRAMING ACTIVE INAEXES ..eeiteeiiieiiieette ettt ettt ettt ettt e st e e sttt e sa b e e sb e e e sa b e e bt e e sabeesabeesabeessbeesabeesaseesabeenes 119
Access Path Maintenance (Immediate, Delay, or REBUII)ccueiviiiiiiiiiiesiece e e 121

Maintenance for Query (QRY) ACCESS PAtRSccuuiiiiiuiiieeciee ettt et e et e e et e e e e ata e e eeaaaeas 122
USING SEIECT/OMIT MAINTENANCE ...cveeeveieeteeeeteeeetee ettt eeteeeeteeeeeeeeteeestaeeeteeesbeeesseesabeessseesaseessseesabeesssessteeensessseesnrenan 124
L8 T4 Lo T T I Y= o |3 SRR 125

Contents 11

USINg MUItI-FOrmMat ACCESS Pathis......oiuiiiiiiiieciee et st e e e e s s ate e e sabe e e e snbaeessabaeesnareeas 126

U TaT =0T e T ol D) - I - 1 PRSI 126
Creating Default Retrieval ACCESS Pathis.........ciiiiiiiiieiee et e re e et e e e rate e e s aer e e e sataeeeentaeeeennneas 127
Index 129

12 Building Access Paths

Chapter 1: Introduction to Access Paths

Purpose

Ordanization

Building Access Paths is part of a set of guides that provide instructions on how to use
the CA 2E product.

This section contains the following topics:

Purpose (see page 13)

Organization (see page 13)

Contents (see page 14)

Related Information (see page 15)

Acronyms and Terms Used in this Guide (see page 15)
Understanding Access Paths (see page 17)
Recognizing the Basic Properties of Access Paths (see page 17)
Recognizing Access Path Components (see page 23)
Narrative Text (see page 24)

Understanding Generator Types (see page 25)

Model Values (see page 25)

Changing Values (see page 28)
Changing Compiler Overrides (see page 32)

This guide describes how to build access paths and arrays in CA 2E. It explains how to set
up your CA 2E system and model values and how to add, modify, delete, and document
access paths and arrays. Each chapter is designed to provide the complete information
needed to perform the tasks identified in the chapter. Review the entire guide or see
the chapter that relates to the specific task you want to perform.

This guide contains a preface, an introductory chapter, and eight task-oriented chapters.

The introduction provides a high level overview of the CA 2E concepts for building
access paths. Seven of the remaining eight chapters contain conceptual material and
instructions on the specific tasks required to add, modify, delete, and generate access
paths. One chapter deals specifically with building arrays.

Where necessary, these chapters also contain references to other topics and chapters in
this guide and other guides or reference manuals with related information.

Chapter 1: Introduction to Access Paths 13

Contents

Contents

The chapters in this guide are as follows:

Chapter

Description

1. Access Paths: An Introduction

This chapter contains an introduction to
the types of access paths and a high level
overview of the CA 2E concepts for
building access paths.

2. Setting Default Options for Your Access
Paths

This chapter contains conceptual material
and instructions on setting CA 2E model
values for allocating prefixes, file names
and SQL libraries. It also includes details
on generating database file values and
instructions on changing compiler
overrides.

3. Adding Access Paths

This chapter contains conceptual material
and instructions for editing file details and
adding the following six access paths:
physical, update, retrieval, resequence,
query, and span.

4. Modifying Access Paths

5. Deleting Access Paths

6. Defining Arrays

7. Generating and Compiling

8. Documenting Access Paths

This chapter contains conceptual material
and instructions on how to modify existing
access paths, including the details, format
entries, relations, and auxiliaries. It also
contains information on modifying virtual
field entries and select/omit criteria.

This chapter contains conceptual material
and instructions on how to delete existing
access paths.

This chapter contains conceptual material
and instructions on how to add, edit, and
delete an array.

This chapter contains conceptual material
and instructions on how to set up your
generation options and how to generate
and compile your access paths.

This chapter contains conceptual material
and instructions on how to document the
access paths created in CA 2E.

14 Building Access Paths

Related Information

Chapter Description

9. Tailoring For Performance This chapter contains material that can
help you tailor your access paths to obtain
the best system performance.

Related Information

Before you build your access paths, you should read or review the material in the
following guides:

m Readme

m Getting Started

m Defining a Data Model

The following guides contain additional information relating to the generation of access
paths and associated functions.

m Building Applications

m Generating and Implementing Applications

You may want to see the following IBM documentation in the context of using this
guide.

m |IBM i DDS Reference Manual

Acronyms and Terms Used in this Guide

Acronyms

Descriptions of the acronyms and values used in this guide are defined once, in this
chapter. Thereafter, only the acronym or value is used.

The following acronyms appear in this guide:

ANSI American National Standards Institute
CBL COBOL

CL Control Language

DDL Data Definition Language

DDS Data Description Specifications

Chapter 1: Introduction to Access Paths 15

Acronyms and Terms Used in this Guide

DML Data Manipulation Language

DRDA Distributed Relational Database Architecture
ESF External Source Format

FCFO First Changed, First Out

FIFO First In, First Out

HLL High level language

IBM International Business Machines Corporation
1/O Input/Output

LIFO Last In, First Out

OoDP Open Data Path

RPG Report Program Generator

SAA Systems Application Architecture

SQL Structured Query Language

Values

The following values appear in this guide:

CPT Capture file

PHY Physical access path
QRY Query access path

REF Reference file

RSQ Resequence access path
RTV Retrieval access path
SPN Span access path

UPD Update access path

This chapter provides an overview of how to build access paths. Its purpose is to help
you understand the CA 2E concepts for using access paths in your design model.

In this guide, the term access path refers to the CA 2E definition exclusively unless
identified as an i OS access path.

16 Building Access Paths

Understanding Access Paths

Understanding Access Paths

A CA 2E access path can be implemented as one or more i OS objects. Access paths can
be created over files that have been defined, but before the functions associated with

the access path are created. The application uses access paths to retrieve, sequence, or
update data from the physical file. CA 2E creates default access paths for you when you

define a file in your model. However, you can create additional access paths for your
file.

An access path defines the physical file and/or the logical views of that file. When you
build one, you specify the following:

m The order in which you want to retrieve records from a file

m Which fields will be present

®m Your select/omit criteria for deciding which records from the file will be retrieved
by the access path

Recognizing the Basic Properties of Access Paths

There are six different types of access paths, each with a different purpose. These types
are defined in this topic. Access paths are allowed for both Reference (REF) and Capture
(CPT) files. In addition, each access path must have a valid CA 2E name.

For more information about REF and CPT files, see Understanding Your Data Model in
Defining a Data Model.

Identifying Access Path Types

The following sections present a description of the six types of access paths.

Chapter 1: Introduction to Access Paths 17

Recognizing the Basic Properties of Access Paths

Physical (PHY) Access Path

A PHY access path is a single-format file containing the fields derived from the
resolution of all the relations on a file. This access path type:

m |sunkeyed

® Has no virtual fields

Is created automatically by CA 2E for every defined REF or CPT file

m |s not referenced directly by functions

Allows no additional PHY access path to be created for a given CA 2E file

Is created in a model if an existing physical file is retrieved into the model through
assimilation

For more information about:

m Assimilation, see the "Assimilation" chapter Defining a Data Model.

m Editing physical file format entries for assimilated files, see the topic Modifying
Access Paths (see page 61).

Examples
Every CA 2E file has one access path of type PHY, called Physical file by default. For
example:
m Physical file for the Company file
m Physical file for the Product file
m Physical file for the Order file
m Physical file for the Order detail file

Update (UPD) Access Path

A UPD access path specifies a uniquely keyed, single-format access path that describes a
view to the function for updating the file. This access path type:

m |s always keyed on the fields that identify the file. These entries arise from the
resolution of the key relations.

® Has no virtual fields
m |s created automatically by CA 2E for every defined REF or CPT file
You can create additional UPD access paths, with the same keys as specified on the file,

but which have a subset of the fields defined by the relations. Additional UPD access
paths are seldom required.

18 Building Access Paths

Recognizing the Basic Properties of Access Paths

Examples

Every CA 2E file has a default CA 2E UPD access path that will be called Update index by
default. For example:

Update index for the Company file
Update index for the Product file
Update index for the Order file
Update index for the Order detail file

You can create other CA 2E UPD access paths for use in functions that update only some
fields from a file, for example:

Company address update only

Batch status only

Retrieval (RTV) Access Path

An RTV access path specifies a uniquely keyed, single- format access path that functions
can use to retrieve records from a file. This access path type:

Is always keyed in exactly the same way as the UPD access path using the relations
of the based-on file.

Allows virtual fields on the access path.
Is automatically created by CA 2E for every defined REF or CPT file.

Defaults to the virtual fields of the based-on file's relations. These are then present
on the access path's relations.

Is associated with an UPD access path; CA 2E automatically makes this association.
Can be edited or trimmed to drop some or all non-key fields from the record layout.
Can define select/omit logic to select or omit records from the access path.

Can be set not to pick up virtual fields.

You can create many RTV access paths for a given file. Each can contain a different
combination of fields and/or virtual fields and a different set of selection criteria, but all
have the same key fields.

Chapter 1: Introduction to Access Paths 19

Recognizing the Basic Properties of Access Paths

Examples
Every CA 2E file has a default RTV access path, created for it automatically by CA 2E,
called Retrieval index by default. For example:

m Retrieval index for the Company file

You can define other CA 2E RTV access paths for the same CA 2E file. For example:
m Company active index (selecting active records only)

m Company summary index (with a subset of the file relations)

Resequence (RSQ) Access Path

A RSQ access path specifies a uniquely or non-uniquely keyed, single-format access path
you can use to describe to CA 2E functions how records are to be retrieved from a file.
This access path type:

m Must be created explicitly

m Defaults to those keys defined by the key relations for the based-on file, but allows
them to be overridden to an alternative key sequence that does not need to be
unique

m Allows virtual fields to be specified on the access path
®m |s associated with a RTV access path that points to an associated UPD access path
m Defaults to the virtual fields of the based-on file's relations. These are then present

on the access path's relations

You can create many RSQ access paths for a given file. Each can contain a different
combination of data fields and/or virtual fields, a different set of selection criteria, or an
alternative key order.

New Topic
m Company Known by Company code; RSQ by Company name
m Order Known by Order no.; RSQ by Order date

m Person Known by Person code; RSQ by Height

20 Building Access Paths

Recognizing the Basic Properties of Access Paths

Query (QRY) Access Path

A QRY access path specifies a keyed, single-format access path you can use to describe
to functions how records are to be retrieved from a file. This access path type:

Allows virtual fields to be specified as key and non-key fields on the access path
Can use virtual fields as key fields

Is available for use with the following function types: Display File, Select Record,
Retrieve Object, Print Object, and Print File

Defaults to those keys defined by the key relations for the file, but allows them to
be overridden to an alternative key sequence

Must be created explicitly

Is associated with a RTV access path that in turn points to an associated UPD access
path

Defaults to the virtual fields of the based-on file's relations. These are then present
on the access path's relations

You can create many QRY access paths for a given file. Each can contain a different
combination of data fields and virtual fields, a different set of selection criteria, and/or
an alternative key sequence.

Customer known by Customer code; Order refers to Customer and Customer name
is a virtual field on Order. Using a QRY access path, you can retrieve Order records
in Customer name order.

Product known by product code; Order line refers to Product and Product name is a
virtual field on Order line. Using a QRY access path, you can retrieve Order line
records in Product name order.

Company known by Company code; Employee owned by Company and Company
name is a virtual field on Employee. Using a QRY access path, you can retrieve
Employee records in Company name order.

Chapter 1: Introduction to Access Paths 21

Recognizing the Basic Properties of Access Paths

Span (SPN) Access Path

A SPN access path specifies a keyed multi-format access path. It can be used to describe
to the edit and display transaction functions how records are to be retrieved from a pair
of related files. These files possess a common foreign key. These files must be related by
an Owned by or Refers to relation. The SPN access path must be created over the
owning or referred to file. This access path type:

m |[nitially defaults to those keys defined by the key relations of the based-on files but
can be overridden to an alternative key sequence

m Allows virtual fields to be specified on the access path relations
m Must be created explicitly

m |s associated with a RTV access path that points to an associated UPD access path
used to carry out any updates to the based-on file

m Allows explicit selection of multiple access path formats

m Defaults to the virtual fields of the based-on file's relations; these are then present
on the access path's relations.

Example

Characteristics of Access Paths

The following table shows characteristics of CA 2E access paths:

Access Path Type Real Fields Key Fields Virtual Fields Virtual Keys
PHY (Physical) Yes No No No
UPD (Update) Yes Relation No No
RTV (Retrieval) Yes Relation Yes No
RSQ (Resequence) Yes User Yes No
QRY (Query) Yes User Yes Yes
SPN (Span) Yes User Yes No

22 Building Access Paths

Recognizing Access Path Components

Naming Access Paths

A name for an access path can be free format and up to 25 characters. Within a given
file, the access path names must be unique. Since each access path is implemented as a
separate i OS object, each access path also will be given a unique source member name
(in the model) before source code can be generated for it. The member name becomes
the name of the object used to implement the access path.

CA 2E supplies a default name if the Allocate Name (YALCVNM) model value is set to
*YES or *MNC.
For more information about:

m Changing a default name refer to the "Setting Default Options for Your Access
Paths" chapter.

m Naming implementation objects see the topic Setting Up the User Environment in
the "Using Your Development Environment" chapter of the Administration Guide.

m The YCHGMDLVAL command, see the CA 2E Command Reference Guide.

Recognizing Access Path Components

This section explains access path details, format entries, and path relations.

Access Path Details

Access Path Details are the various implementation options specified for access paths.
These options include changing source names and text, allowing selection criteria, and
specifying generation mode, unique key sequence, access path maintenance, and
alternate collating sequence.

Access Path Format Entries

Access Path Format Entries show which fields are present on the access path, which of
those fields are key fields for that access path, and the order of those keys. SPN access
paths have at least two formats. Other access path types can have only one format.

Access Path Relations

Access Path Relations are the set or subset of a file's relations that apply to a particular
access path. The compulsory relations for an access path are the key level relations.
They must be present on all access paths for the file. Each file-to-file relation on the
access path can be associated with a different set of virtual fields.

Chapter 1: Introduction to Access Paths 23

Narrative Text

Access Path Auxiliaries

Access Path Auxiliaries refer to:

m The three different i OS objects used to implement a query access path for DDS
objects. They include a logical file, a physical file, and a control language (CL)
program.

m The SQL index created for an SQL-implemented access path with *IMMED index
maintenance.

m The DDL index created for a DDL- implemented access path with *IMMED index
maintenance.

m Auxiliaries are not applicable for DDL type file as Views are not created for DDL type
file and only Index with the same name as the source member name is created.

For more information about auxiliaries, see:

m The topic Adding a Query (QRY) Access Path in the "Adding Access Paths" chapter

m The topic Modifying Access Paths in the "Modifying Access Paths" chapter

Narrative Text

Narrative text is user-added text associated with any CA 2E object. You can add
narrative text to any access path you create. After you create the access paths, add the
narrative text to describe its definition and function. It is used in the following places:

m Documentation of the model
m [nteractive explanation of the model
m Generation of help text for functions

m Generation of program synopses

For more information about how to use narrative text, see:

m The topic Using Narrative Text in the "Using Your Model" chapter of the
Administration Guide

m The "Documenting Access Paths" chapter of this guide

24 Building Access Paths

Understanding Generator Types

Understanding Generator Types

Model Values

Within a CA 2E design model, you can use either of DDS, SQL or DDL to implement data
definitions for all types of access paths.

For more information about generator types, see the following:

m The "Setting Default Options for Your Access Paths" chapter and the "Generating
and Compiling" chapter in this guide.

m The "Setting Default Options for Your Functions" chapter in the CA 2E Building
Applications guide

The "Using Your Development Environment" chapter in the Administration Guide

This chapter explains how to set up options for the model values assigned to the access
paths that you build and how to change compiler overrides.

Model-specific values control particular features of the interactive use of CA 2E, code
generation, and implementation.

For more information about what a model value is, see the "Using Your Development
Environment" chapter in the Administration Guide.

The model values you need when building access paths are:

YALCVNM The Allocate Valid Name (YALCVNM) model value specifies
whether DDS and SQL object names are to be allocated
automatically by CA 2E or by a specific standard you establish for
the CA 2E model.

YOBJPFX The Object Prefix (YOBJPFX) model value specifies the prefix to be
used when generating system objects.

YFILPFX The Last Used File Prefix (YFILPFX) model value contains the last
2-character identifying mnemonic CA 2E used when creating a new
file. These two characters occupy positions three and four of the
new file name, following the model object prefix.

Chapter 1: Introduction to Access Paths 25

Model Values

For more information about object name prefixes, see the following:
m The "Creating and Managing Your Model" chapter in the Administration Guide

m The Setting Up the User Environment section in the "Using Your Development
Environment" chapter of the Administration Guide

YDBFGEN The Database Generation (YDBFGEN) model value specifies the
default method of source generation (DDS, SQL or DDL) for
database definition.

You can set your source generation type by doing the following:
m Setting the model value YDBFGEN at the time that you create your CA 2E model.
m Changing the model value YDBFGEN after creating the model.

m Changing the generation mode on a specific access path.

For more information about setting the source generation type for your model, see the
"Creating and Managing Your Model" chapter in the Administration Guide.

YSQLLIB The SQL Library (YSQLLIB) model value specifies the library (collection) in
which the SQL objects needed to implement an SQL database should be
placed.

Note: Earlier, when CA 2E used to generate SQL/DDL artifacts, the SQL
collection mentioned in YSQLLIB was hard-coded into the generated
source. Upon compilation the objects were placed in that SQL collection.
The SQL/DDL generation has now been modified to do the following

m The YSQLLIB model value can now hold a normal library (non-SQL
collection).

m The useris given the option to decide whether to generate the
hard-coded value present in the YSQLLIB model value, through the
YSQLCOL model value.

m Ifthelibrary/SQL collection is not generated into the source during
generation, when a compile is submitted to create the SQL/DDL
objects, the objects are created into the library/SQL collection
specified for the YSQLLIB model value.

26 Building Access Paths

Model Values

YSQLVNM

YSQLLEN

The SQL Naming (YSQLVNM) model value specifies whether to use the
extended SQL naming capability. You can specify one of the DDS names
(the shipped default), the names of CA 2E objects in the model (extend
SQL naming), or the long names of the CA 2E objects in the model along
with the DDS or implementation names.

Note: If a table that has a valid system name (less than or equal to 10
bytes in length), is generated with YSQLVNM model value set as *LNG or
*LNT, and when you set the Enhance SQL Naming option on the Edit File
Details panel to Y and then generate the source, the table is created with
(underscores) "_"s and "TABLE" as suffix, so that the name of the table
becomes more than 10 char long.

Examples:

m CUSTOMER is generated as CUSTOMER_TABLE along with its 2E
implementation name.

m CUST is generated as CUST__ TABLE along with its 2E implementation
name.

m CisgeneratedasC TABLE along with its 2E implementation
name.

m To generate or regenerate a function with RLA code for DDL
database, set the YSQLVNM model value to *DDS or *LNG or *LNT,
or *LNF and set the YDDLDBA model value to *RLA.

The SQL Naming Length (YSQLLEN) model value is a numeric value that
controls the length of the extended SQL name. Its maximum value is 25.
This model value is used only when YSQLVNM is *SQL.

For more information about extended SQL naming, see the "SQL Implementation"
appendix in the Administration Guide.

YDBFACC

The Database Access Method (YDBFACC) model value lets you
specify whether to access data from a table or from a view when
an access path and the table over which it is based contain the
same fields.

For more information about direct table access, see the "SQL Implementation" appendix
in the Administration Guide.

You can set your model values when you create your model or change the model value
with the YCHGMDLVAL command. However, once you have set your model values, you
can then override many of these defaults for a specific access path using the access path
detail options.

For more information about model values and how to set model values, see
YCHGMDLVAL in the CA 2E Command Reference Guide.

Chapter 1: Introduction to Access Paths 27

Changing Values

Chanding Values

Use the following information to change the model values for your access paths.

Allocating Names

This topic tells you how to control the names assigned to CA 2E objects by changing the
names given to the source member names when the access paths are built.

Allocating a Source Member Name for an Access Path
1. Zoom into the file.

At the Edit Database Relation panel, type Z next to any relation for the file and
press Enter.

The Edit File Details panel displays.
2. Zoom into the access path.
Type Z next to the one you want to rename and press Enter.

The Edit Access Path Details panel displays:

EDIT ACCESS PATH DETAILS SYHDL
File pame ! Customer Attribute . : REF
Access path nmame. : Relrieval index Type. . . . i RTV

Unigue or duplicate order : U (U-Unique,F-FIFO,L-LIFQ,C-FCFO,"' '-Undefined)
Index maintenamce option : I (I-IMMED, D-DLY, R-REBLD)
Alternate collating table :

Allow selectsomit : _ (8-8tatic, D-Dynamic, ' '-Nonel

Gerertation mode . . . : M (M-MDLYAL, D-DDS, S-S0L)

Source member name . . : UUADREL]

Source member text . . ! Customer Retrieval index
Format GEN Format text Associated

? Seq name pfx (Based on file) Update access path

! 1 FADREAD AD Customer Update index

SEL: 2-Entries. R-Relations. S$-5elect~omit. A-Assoc.acps. T-Trim, V-Virtualize
F3=Exit FB=Rename F20=Harrative

3. Enter the new source member name in the source member name option field and
press Enter.

28 Building Access Paths

Changing Values

Controlling Auxiliary Names

CA 2E generates default values for access path auxiliaries for Query (QRY) access paths

and SQL tables or views with *IMMED maintenance capability.

For more information about:

m SQL generation, see Specifying Generation Mode later in this section.

®m SQL naming and separate view and index creation, see the "SQL Implementation"
appendix in the Administration Guide.

Change the name of auxiliaries using the following procedure:

1. Zoom into the file.

At the Edit Database Relations panel, type Z next to the relation for the file and
press Enter.

The Edit File Details panel displays.
2. Zoom into the access path.
Type Z next to the selected QRY (or SQL) access path and press Enter.

The Edit Access Path Details panel displays with the details for the selected access
path.

3. View the auxiliaries.
Press F7 to view the access path auxiliaries.
The Edit Access Path Auxiliaries panel displays.

4. Type the new source member names and press Enter.

Chapter 1: Introduction to Access Paths 29

Changing Values

Creating an SQL Environment

Using SQL facilitates the portability of generated applications and is the only means of
database access across machines in Distributed Relational Database Architecture
(DRDA).

For more information:

m OnSQL, see the appendix "SQL Implementation" in the Administration Guide.

m On DRDA, see the chapter "Modifying Access Paths" in this guide, and the chapter
"Distributed Relational Database Architecture" in Generating and Implementing
Applications.

To create SQL tables and views or DDL indexes for your model, you need an SQL library
known as a collection. This collection contains the SQL objects, including the catalog, a
data dictionary, a journal, and two journal receivers.

When creating an SQL environment, use one of the following:

m SQLLIB parameter on the YCRTMDLLIB command creates a collection library name
with MDL replaced by SQL or a name of your choosing.

m Create SQL Library (YCRTSQLLIB) command creates a collection and links it to a
model.

Specifying Generation Mode

The choice of which generation mode to use is controlled by the Database File
Generation (YDBFGEN) model value that acts as an implementation flag. The default
value is DDS. You can use the following procedure to assign a value to a specific access
path when it is built. The options are DDS, SQL and DDL.

30 Building Access Paths

Changing Values

Changing the Generation Mode at the Access Path Level

To change the generation mode for a specific access path at the access path level:

1.

Zoom into the file. At the Edit Database Relations panel, type Z next to the relations
for the file and press Enter.

The Edit File Details panel displays.

Zoom into the access path. Type Z next to the access path whose generation mode
you want to change and press Enter.

The Edit Access Path Details panel displays.

Change the generation mode. Type the character that represents the new
generation model value.

Options are:
m D forDDS
m SforsSQL

m M for MDLVAL
m LforDDL

Note: If an access path specifies M for MDLVAL when it is generated, it will use the
current value for the YDBFGEN model value. If you want to override this value,
enter D, S or L. The default is M.

Press Enter.

Chapter 1: Introduction to Access Paths 31

Changing Compiler Overrides

Chanding Compiler Overrides

Within CA 2E, there are various properties of the i OS database files that you can modify
by specifying compiler overrides. The overrides are the parameters on the compiler
commands.

CA 2E allows you to prompt for and store these overrides that are then automatically
applied by the compile pre-processor when you compile your programs.

Some of the overrides you can specify are:

m Physical files: i OS Create Physical File (CRTPF) command

= MAXMBRS, SIZE

Note: MAXMBRS is a parameter that specifies the maximum number of members the
file can hold.

m |ogical files: i OS Create Logical File (CRTLF) command

= MAXMBRS, DTAMBRS

Note: Some of the compile parameters (MAINT, TEXT) are specified by the access path
details. Override values should not be specified for these values.

For more information:

m On how to prompt for and store overrides, see the Changing Compiler Overrides
section in the "Generating and Compiling" chapter of this guide.

m OntheiOS commands, see the IBM i CL Command Reference.

32 Building Access Paths

Chapter 2: Setting Default Options for Your
Functions

This chapter identifies the model values specific to functions and shows you how to
change them, how to change the default names that assigns to functions, and function
key defaults.

This section contains the following topics:

Model Values Used in Building Functions (see page 33)
Changing Model Values (see page 49)

Changing a Function Name (see page 50)

Function Key Defaults (see page 51)

Model Values Used in Building Functions

This topic covers the model values used by functions. Function options can affect the
device design and processing defaults. Model values are shipped as defaults for the
Create Model Library (YCRTMDLLIB) command.

Many function options are derived from model values. If you find that you often change
these options at the function level, you may want to review the settings in your model
and change them at the model level.

For more information about:

m Understanding model values, see Getting Started, Setting Up the Model
Environment in the chapter "Using Your Development Environment"

m Model values you can change at the function level, see Changing Model Values later
in this chapter

m Descriptions of each model value, YCHGMDLVAL, see the Command Reference

Chapter 2: Setting Default Options for Your Functions 33

Model Values Used in Building Functions

YABRNPT

YACTCND

YACTFUN

YACTSYM

The YABRNPT value is only for NPT generation, and enables you to choose between
creations of Action Bars or DDS Menu Bars for a given function. The default is DDS
Menu Bars for models created as of r5.0 of COOL:2E. For existing models upgraded to
r5.0, the default is Action Bars.

We recommend that you migrate to DDS Menu Bars over time since DDS Menu Bars
make use of the new 0S/400 ENPTUI features, which allow the menu bars to be coded
in the DDS for the display file. The Action Bars require that an external program be
called to process the action bar. As a result, the DDS Menu Bars are faster, have more
functionality, and create more efficient functions.

For more information about NPT user interface options, see ENPTUI in the chapter
"Modifying Device Designs."

The Action Diagram Compound Symbols (YACTCND) model value defines the symbols
used in editing and displaying compound condition expressions.

The format for modifying this design option is:

YCHGMDLVAL MDLVAL (YACTCND) VALUE('& AND | OR ~ NOT (()) c c')

For more information about compound conditions, see Entering and Editing Compound
Conditions in the chapter "Modifying Action Diagrams."

The Action Diagram Compute Symbols (YACTFUN) model value defines the symbols used
in editing compute expressions, which include + - * /\ () x. You are only likely to change
these defaults if you have national language requirements. The binary code values for
these symbols can map to different values, depending on the code page in use. For
example, a forward slash (/) on the US code page would map to a cedilla in a French
National code page.

For more information on compute expressions, see Entering and Editing Compound
Conditions in the chapter "Modifying Action Diagrams."

The Action Diagram Structure Symbols (YACTSYM) model value defines the symbols
used in action diagrams. The shipped default is *SAA. The Action Diagram Editor and the
Document Model Functions (YDOCMDLFUN) command use this design option.

34 Building Access Paths

Model Values Used in Building Functions

YACTUPD

YALCVNM

YBNDDIR

YCNFVAL

YCPYMSG

The Action Diagram Update (YACTUPD) model value defines the default value for the
Change/create function option on the Exit Function Definition panel. The shipped
default is *YES. The value *CALC sets the Change/create function option to Y only when
a change to the function’s action diagram or panel design is detected.

The Automatic Name Allocation (YALCVNM) model value indicates whether should
automatically allocate DDS and object names. The shipped default is *YES.

For more information on name allocation, see Getting Started— Setting Up the User
Environment topic, Naming Control in the chapter "Using Your Development
Environment."

Specifies a binding directory that can resolve the location of any previously compiled
RPGIV modules. Use this model value while compiling RPGIV programs with the
CRTBNDRPG command.

Note: For more information, see the section The YBNDDIR Model Value in the Chapter
ILE Programming.

The Confirm Value (YCNFVAL) model value determines the initial value for the confirm
prompt. The shipped default is *NO.

For more information on function options, see the chapter, "Modifying Function
Options."

The Copy Back Messages (YCPYMSG) model value specifies whether, at program
termination, outstanding messages on the program message queue are copied to the
message queue of the calling program. The shipped default is *NO.

For more information on function options, see the chapter, "Modifying Function
Options."

Chapter 2: Setting Default Options for Your Functions 35

Model Values Used in Building Functions

YCRTENV

YCUAEXT

YCUAPMT

The Creation Environment (YCRTENV) model value determines the environment in
which you intend to compile source is the iSeries. The shipped default is the iSeries.

For more information about:

m Controlling design, Setting Up the Model Environment in the chapter "Using Your
Development Environment," in Getting Started

m Environments, see Managing Your Work Environment—Generating and
Implementing Applications in the chapter "Preparing for Generation and
Compilation"

The CUA Device Extension (YCUAEXT) model value determines whether the text on the
right side text is used for device designs. The shipped default is *DEFAULT, which results
in no right text and no padding or dot leaders.

The YCUAEXT value, *C89EXT (for CUA Text), provides CUA design features on top of
those which the model value YSAAFMT provides, such as defaulting and alignment of
right side text, padding or dot leaders to connect fields with field text, and prompt
instruction lines on all device function types.

For more information on field attributes and right side text defaults, see the chapter,
"Modifying Device Designs," Device Design Conventions and Styles.

The CUA Prompt (YCUAPMT) model value controls the CUA prompt (F4). If enabled, this
design option enables end users to request a list display of allowed values by pressing
F4. The value *CALC provides additional F4 functionality by processing the CALC: user
points in the function where F4 is pressed—for example, to provide Retrieve Condition
functionality.

The default value for YCUAPMT is *MDL. This value directs to enable the CUA prompt at
the model level if the YSAAFMT model value is *CUATEXT or *CUAENTRY.

For more information about:

m Setting display defaults, see the chapter, "Modifying Device Designs"

m On the *CALC value, see the Command Reference, the YCHGMDLVAL command

36 Building Access Paths

Model Values Used in Building Functions

YCUTOFF

YDATFMT

YDATGEN

YDBFGEN

YDDLDBA

The Year Cutoff (YCUTOFF) model value specifies the first of the hundred consecutive
years that can be entered using two digits. It is specified as 19YY, which represents the
hundred years: 19YY to 20YY-1. Values between YY and 99 are assumed to be in the
20th century; namely, 19YY to 1999; values between 00 and YY-1 are assumed to be in
the 21st century; namely 2000 to 20YY-1. The default is 1940. The YCUTOFF value is
retrieved at run time and applies to all date field types: DTE, D8#, and DT#.

The Date Format (YDATFMT) model value works in conjunction with the model value
YDATGEN. If YDATGEN is *VRY. The setting for YDATFMT determines the order of the
date components at run time; for example, MMDDYY or DDMMYY.

The Date Validation Generation (YDATGEN) model value determines the type of date
editing source code generates. With YDATGEN set to *VRY, you can change the date
format for an application with the YDATFMT model value. No recompilation of functions
is necessary.

The Database Implementation (YDBFGEN) model value defines the method for database
file generation and implementation: DDS, SQL or DDL.

The Database Access Method (YDDLDBA) model value specifies a method of accessing
the database (RLA or SQL) when a function's Generation Mode option is set to
A(ACPVAL) or M(MDLVAL), which resolves to DDL type.

*RLA
Specifies that the external function generates with RLA access.
*sQL
Specifies that the external function generates with SQL access.
Note: To generate or regenerate a function with RLA code for DDL database, set the

YSQLVNM model value to *DDS or *LNG or *LNT, or *LNF and set the YDDLDBA model
value to *RLA.

Chapter 2: Setting Default Options for Your Functions 37

Model Values Used in Building Functions

YDFTCTX

YDSTFIO

YERRRTN

YEXCENV

The Parameter Default Context (YDFTCTX) model value specifies the default context to
use for a given function call in the action diagram editor when no context is supplied:
LCL or WRK. The shipped default is *WRK.

The Distributed File I/O Control (YDSTFIO) model value, together with model value
YGENRDB, provides DRDA support. The shipped default value is *NONE, indicating that
will not generate distributed functionality.

For more information on DRDA, see Generating and Implementing Applications in the
chapter "Distributed Relational Database Architecture."

For RPG-generated functions, the Error Routine (YERRRTN) indicates whether will
generate an error handling routine (¥*PSSR) in the program that implements the
function. The shipped default value is *NO.

Note: For EXCUSRPGM functions, this value specifies whether an error-handling routine
should be generated in the calling program to check the value of the *Return code on
return from the EXCUSRPGM (if the EXCUSRPGM does not have the *Return code as a
parameter, this check will not be generated).

The call to a CL program that implements an EXCMSG function uses an 0S/400 program.
The Execution Environment (YEXCENV) model value determines the default
environment, QCMD (0S/400), in which Execute Message (EXCMSG) functions execute.

For more information about:

m EXCMSG functions, see Function Types, Message Types, and Function Fields in the
chapter, "Defining Functions"

m QCMD and QCL, see Generating and Implementing Applications— Managing Your
Work Environment in the chapter "Preparing for Generation and Compilation"

38 Building Access Paths

Model Values Used in Building Functions

YGENCMT

YGENHLP

YGENRDB

YHLLGEN

YHLLVNM

The time required to generate a function can be significantly improved if comments are
not required for the generated source code. The YGENCMT model value lets you specify
whether or not comments are placed in the resulting generated source code. You can
specify that all comments (*ALL), only header comments (*HDR), or no comments (*NO)
be generated. The shipped default is *ALL.

The Generate Help Text (YGENHLP) model value allows you to specify whether help text
is generated for a particular function. You can specify generation of the function only
(*NO), help text only (*ONLY), or both the function and help text (*YES). This value can
be overridden at the function level. The shipped default is *YES.

The Generation RDB Name (YGENRDB) model value provides the DRDA support for
specifying a default database. When you execute the CRTSQLxxx command, this
database is used in creation of the SQL package. The default value for YGENRDB is
*NONE, which means that DRDA compilation is not enabled.

For more information about DRDA, see Generating and Implementing Applications in
the chapter "Distributed Relational Database Architecture."

The HLL to Generate (YHLLGEN) model value identifies the default HLL type for new
functions. The HLLGEN parameter on YCRTMDLLIB sets this model value.

Note: To default to the value for model value YSYSHLL, select *SYSHLL for the parameter
HLLGEN.

The HLL Naming Convention (YHLLVNM) model value determines the HLL conventions
for new function names. The HLLVNM parameter on YCRTMDLLIB sets this model value.
The default is *RPGCBL, allocation of names that both RPG and COBOL compilers
support.

For more information about converting HLLs, see Generating and Implementing
Applications—Converting a Model from One HLL to Another, in the chapter "Preparing
for Generation and Compilation."

Chapter 2: Setting Default Options for Your Functions 39

Model Values Used in Building Functions

YHLPCSR

YLHSFLL

YLVLCHK

The Generate Cursor Sensitive Text (YHLPCSR) model value gives you the option of
generating your function with cursor-sensitive help. That is help- specific to the context
(cursor position) from which the end user requests it. The shipped defaultis Y (Yes).

The Leaders for Device Design (YLHSFLL) model value refers to the symbols to usedas
leaders between text and input or output fields on panels. The shipped default value is
*SAA, for SAA default left-hand filler characters. You can change any of these characters
using the YCHGMDLVAL command.

The Generate IDX with LVLCHK(*YES) (YLVLCHK) model value specifies whether an Index
(SQL or DDL), when generated with the RCDFMT keyword in it, is created with
LVLCHK(*YES). The possible values are *NO and *YES. The shipped default is *NO.

If YLVLCHK is specified as *NO, then existing defaults around LVLCHK are retained when
an SQL or DDL index is generated and created. The existing defaults for the LVLCHK
attribute in the case of SQL and DDL are as follows.

m When a table or view is generated and created, it is generated with LVLCHK(*YES),
irrespective of the existence of the RCDFMT keyword.

m When an index (SQL or DDL) is generated and created without the RCDFMT
keyword, it is created with LVLCHK(*YES).

m When an index (SQL or DDL) is generated and created with the RCDFMT keyword, it
is created with LVLCHK(*NO).

If YLVLCHK is specified as *YES (in addition to YSQLFMT set as *YES), upon subsequent
generation and creation of an index (SQL or DDL), the index is created with
LVLCHK(*YES).

Note: If YLVLCHK is set to *YES (along with YSQLFMT set to *YES), upon re-generation of
the access path, an additional line "Y* CHGLF LVLCHK(*YES)" is generated into the
header portion. This informs YEXCSQL to create the corresponding index with
LVLCHK(*YES). For any other combination of YLVLCHK and YSQLFMT, there is no change
to the existing processing.

40 Building Access Paths

Model Values Used in Building Functions

YNPTHLP

YNLLUPD

YOBJPFX

The NPT Help Default Generation Type (YNPTHLP) model value determines the type of
help text to generate for NPT functions. All functions are NPT unless the functions are
being generated for a GUI product. The types are UIM or TM. The shipped default for
YNPTHLP is *UIM.

For more information about UIM support, see Objects from UIM Generation in the
chapter "Implementing Your Application."

The Null Update Suppression (YNLLUPD) model value sets the default for whether
CHGOBI functions update or release the database record if the record was not changed.
This can be overridden with a matching function option. The shipped default is *NO.

® *NO

CHGOBI functions do not check whether the record has changed before updating
the database. In other words, null update suppression logic is not generated in
CHGOBI functions.

= *AFTREAD

CHGOBIJ checks whether the record changed between the After Data Read and Data
Update user points.

m *YES
CHGOBIJ checks whether the record changed both after the Data Read and after the
Data Update’ user points.

For more information about:

m CHGOBIJ database function, refer to the chapter, "Defining Functions"

m Suppressing null updates, see Understanding Contexts, PGM in the chapter
"Modifying Action Diagrams"

The Member Name Prefix (YOBJPFX) model value specifies the prefix (up to two
characters) uses to generate object names. The shipped default is UU. If you change
this prefix, do not use Q, #, and Y because they are reserved characters for .

For more information about naming prefixes, see Creating an Model in the chapter
"Creating and Managing Your Model" in Getting Started.

Chapter 2: Setting Default Options for Your Functions 41

Model Values Used in Building Functions

YPMTGEN

YPMTMSF

YPUTOVR

The Prompt Implementation (YPMTGEN) model value specifies whether the text on your
device designs is generated, implemented, and stored in a message file, making it
available for national language translation. The shipped default value is *OFF. The
parameter PMTGEN on the YCRTMDLLIB command initially sets the YPMTGEN model
value.

For more information about:

m National Language Support, see Generating and Implementing Applications in the
chapter "National Language Support"

m YCRTMDLLIB, see the Command Reference

The Prompt Message File (YPMTMSF) model value specifies the message file into which
device text message IDs are stored. retrieves the messages from this message file at
execution time.

For more information about National Language Support, see Generating and
Implementing Applications in the chapter "National Language Support."

The DDS Put With Override (YPUTOVR) model value is a function generation option. It
enables you to specify use of the DDS PUTOVR keyword in the generated DDS. This
keyword, in effect, reduces the amount of data that needs transmission between the
system and its workstations. Its use can improve performance, particularly on remote
lines.

For more information about system performance, see the AS/400 Programming: Data
Description Specifications Reference.

42 Building Access Paths

Model Values Used in Building Functions

YRP4HSP

YRFSACT

YRP4HS2

YRP4SGN

Used by the RPGIV Generator for the contents of the Control (H) specification for
objects of type *PGM. The allowed values are any RPGIV H-specification keywords, for
example:

= DATEDIT(*YMD) DEBUG(*YES)
= DATFMT(*YMD)

Note: If you need to enter a value that is longer than 80 characters, you should use the
command YEDTDTAARA DTAARA(YRP4HSPRFA)

The Refresh Action Diagram on Entry (YRFSACT) model value specifies whether the
YCHKFUNACT processor must be called during Action Diagram load to refresh the Action
Diagram. The possible values are *NO and *YES. The shipped default is *NO.

Note: For more information about what is changed when an Action Diagram is
refreshed, see the details of the YCHKFUNACT command in the Command Reference
Guide.

Used by the RPGIV Generator for the contents of the Control (H) specification for
objects of type *MODULE. The allowed values are any RPGIV H-specification keywords,
for example:

m H DATFMT(*YMD)
= DATEDIT(*YMD) DEBUG(*YES)

m Note: If you need to enter a value that is longer than 80 characters, you should use
the command YEDTDTAARA DTAARA(YRP4HS2RFA)

The RPGIV generator includes some source generation options that you can set at a
model level. These options are in the model value YRP4SGN in a data area called
YRP4SGNRFA (RPGIV source generation options). YRP4SGNRFA is a 16-character data
area.

Note: For more information, see the section Model Value YRP4SGN in the Chapter ILE
Programming.

Chapter 2: Setting Default Options for Your Functions 43

Model Values Used in Building Functions

YSAAFMT

YSFLEND

YSHRSBR

The SAA Format (YSAAFMT) model value controls the design standard for panel layout.
This standard can be CUA. *CUAENTRY is the shipped default.

The DSNSTD parameter on the YCRTMDLLIB command controls the initial YSAAFMT
value. You can override the header or footer for a function from the Edit Function
Options panel. You can also change the value of YSAAFMT using the YCHGMDLVAL
command.

For more information about:

m Using YSAAFMT options, see Device Design Conventions and Styles in the chapter
"Modifying Device Designs"

m YSAAFMT values, see YCHGMDLVAL in the Command Reference

The Subfile End (YSFLEND) model value controls whether the + sign or

More. . . is displayed in the lower right location of the subfile to indicate that the subfile
contains more records. This feature is available for all subfile functions. The shipped
default is *PLUS. To change to *TEXT everywhere, change the model value and
regenerate your subfile functions.

The setting of YSFLEND is resolved in the following areas:
m Generated applications

m Device designs

®m Animated functions

m Function documentation (YDOCMDLFUN)

The Share Subroutine (YSHRSBR) model value specifies whether generated source code
for subroutines are shared and whether the subroutine’s interface is internal or
external. This model value and its associated function option are available on the
CHGOBJ, CRTOBJ, DLTOBJ, RTVOBJ, and EXCINTFUN function types.

44 Building Access Paths

Model Values Used in Building Functions

YSNDMSG

YSQLCOL

For new functions, the Send Error Message (YSNDMSG) model value specifies whether
to send an error message for only the first error found or for every error. In either case,
outstanding messages clear when the end user presses Enter. The shipped default value
is *NO, do not send all error messages; send only the first error message.

The Generate SQL Collection/Library Name (YSQLCOL) model value specifies whether a
hard coded SQL Collection/Library name should be generated for tables, indexes and
views. The possible values are *YES and *NO. The shipped default is *YES.

If YSQLCOL is specified as *YES, the SQL Collection/Library specified for the YSQLLIB
model value is generated into the tables, indexes and views, by default, as is the case
now. Subsequently when YEXCSQL is executed to create tables, indexes and views, they
are created into the hard coded SQL Collection/Library. If YSQLCOL is specified as *NO,
the SQL Collection/Library specified for the YSQLLIB model value is not generated into
the tables, indexes and views. However, when YEXCSQL is executed subsequently, the
tables, indexes and views are generated into the SQL Collection/Library specified for the
YSQLLIB model value.

Note: If YSQLCOL is set to *NO and the access paths are generated, another change that
can seen in the source, apart from the absence of hard coded SQL collection/Library
name is, the previously generated Z* line "Z* YEXCSQL NAMING(*SQL)" is now
generated as "Z* YEXCSQL NAMING(*SYS)".

Chapter 2: Setting Default Options for Your Functions 45

Model Values Used in Building Functions

YSQLFMT

YSQLLCK

The Generate SQL RCDFMT clause (YSQLFMT) model value specifies whether the
RCDFMT keyword must be generated for SQL tables, views, and indexes. The possible
values are *NO, and *YES. The shipped default is *NO.

If YSQLFMT is specified as *NO, the record format is the same as the table, index, or
view name (if YSQLVNM (*DDS) is specified) or will be generated by the system (if
YSQLVNM(*SQL) is specified). If YSQLFMT is specified as *YES, the RCDFMT value is
calculated using the same rules as are used when DDS files are generated.

Note: Irrespective of the value of the YSQLFMT model value and if the generation mode
is *DDL, the RCDFMT keyword is generated.

Important!

If YSQLFMT is set to *YES or *NO and a DDL index is generated and created, the
index is created with LVLCHK(*NO).

If YSQLFMT is set to *YES and an SQL index is generated and created, the index is
created with LVLCHK(*NO).

If YSQLFMT is set to *NO and an SQL index is generated and created, the index is
created with LVLCHK(*YES).

If you want to change the LVLCHK attribute of the index to LVLCHK(*YES), the model
value YLVLCHK must be set to *YES, and the corresponding index-related access path
must be regenerated and re-created. Upon regeneration of the access path, an
additional line "Y* CHGLF LVLCHK(*YES)" is generated in the header portion, which
informs YEXCSQL to create the corresponding index with LVLCHK(*YES).

Note: If YSQLFMT is set to *YES, YLVLCHK is set to *YES and RUNSQLSTM is used to
create an index (SQL or DDL), the index would still be created with LVLCHK(*NO). The
current functionality does not cater to the RUNSQLSTM command. Tables and Views
(5QL) and Tables (DDL) are created with LVLCHK(*YES) by default, irrespective of the
YSQLFMT model value. Therefore, YSQLFMT and YLVLCHK model values have no effect
on tables and views regarding the LVLCHK attribute.

The SQL Locking (YSQLLCK) model value specifies whether a row to be updated is locked
at the time it is read or at the time it is updated. The default is *UPD, lock rows at time
of update.

46 Building Access Paths

Model Values Used in Building Functions

YSQLVNM

The SQL Naming (YSQLVNM) model value specifies whether to use the extended SQL
naming capability. The valid values are:

*DDS

Use DDS names. The shipped default.
*sQL

Use the names of the CA 2E objects in the model.
*LNG

Use the long names of the CA 2E objects in the model along with the DDS or
implementation names.

*LNF

Use the long field names of the CA 2E objects in the model along with the DDS or
implementation names.

*LNT

Use the long table names of the CA 2E objects in the model along with the DDS or
implementation names.

Note:

If a table that has a valid system name (less than or equal to 10 bytes in length), is
generated with YSQLVNM model value set as *LNG or *LNT, and when you set the
Enhance SQL Naming option on the Edit File Details panel to Y and then generate the
source, the table is created with (underscores) "_"s and "TABLE" as suffix, so that the
name of the table becomes more than 10 char long.

Examples:

m CUSTOMER is generated as CUSTOMER_TABLE along with its 2E implementation
name.

m CUST is generated as CUST__TABLE along with its 2E implementation name.
m CisgeneratedasC TABLE along with its 2E implementation name.

m To generate or regenerate a function with RLA code for DDL database, set the
YSQLVNM model value to *DDS or *LNG or *LNT, or *LNF and set the YDDLDBA
model value to *RLA.

Chapter 2: Setting Default Options for Your Functions 47

Model Values Used in Building Functions

YSQLWHR
The SQL Where Clause (YSQLWHR) model value specifies whether to use OR or NOT
logic when generating SQL WHERE clauses. The default is *OR.
For more information about the YSQLLCK and YSQLWHR model values, see the appendix
"SQL Implementation" in Getting Started.

YWSNGEN

The Workstation Generation (YWSNGEN) model value defines whether interactive
functions operate on non-programmable terminals (NPT) or on programmable
workstations (PWS) communicating with an iSeries host. For programmable
workstations, you also specify the PC runtime environment. YWSNGEN can be
overridden by a function option. The possible values are:

= NPT

Generates functions for non-programmable terminals (NPT) communicating with
an iSeries host system.

= *GUI

Generates functions for non-programmable terminals together with a Windows
executable running in a Windows environment under emulation to the host.

= *JVA

Generates functions for non-programmable terminals together with a Windows
executable running in a Windows environment under emulation to the host and a
Java executable running in a Windows environment using a Web browser with
emulation to the host.

m *VB

Generates functions for non-programmable terminals together with a Visual Basic
executable running in a Windows environment under emulation to the host.

User Interface Manager (UIM)

Three model values provide options for UIM help text generation:

m The Bidirectional UIM Help Text (YUIMBID) model value provides national language
support of languages with both left-to-right and right-to-left orientations

m The Default UIM Format (YUIMFMT) model value provides paragraph or line tags

m The UIM Search Index (YUIMIDX) model value provides search for the index name
derived from Values List prefix

48 Building Access Paths

Changing Model Values

Window Borders

Three model values provide design options for the appearance of the border on
windows:

m The Window Border Attribute (YWBDATR) model value provides shadow or no
shadow

m The Window Border Characters (YWBDCHR) model value provides dot/colon
formation

m The Window Border Color (YWBDCLR) model value provides CUA default (Blue) or

another color

For more information on Modifying Windows, see Editing Device Designs in the chapter
"Modifying Device Designs."

Chandging Model Values

Function Level

This topic summarizes changing model values for a function of your model.

You can override model value settings that determine function options at the function
level from the Edit Function Options panel. You can reach this panel by zooming into the
function from the Edit Functions panel, then pressing F7 (Options) from the Edit
Function Details panel.

The model values that have corresponding fields on the Edit Function Options panel are:

Values Meaning

YABRNPT Create Action Bars or DDS Menu Bars for NPT generation
YCNFVAL Initial value for the confirm prompt

YCPYMSG Copy back messages

YDBFGEN Generation mode

YDSTFIO Distributed file 1/O control

YERRRTN Generate error routine

YGENHLP Generate help text

YNPTHLP Type of help text to be generated

YPMTGEN Screen text implementation

Chapter 2: Setting Default Options for Your Functions 49

Changing a Function Name

Values Meaning

YSNDMSG Send all error msgs (messages)
YSFLEND Subfile end

YWSNGEN Type of workstation

Model Level

For more information about:

m Options applicable to each function see Function Types, Message Types, and
Function Fields in the chapter, "Defining Functions"

m On step-by-step procedures, see Specifying Function Option in the chapter,
"Modifying Function Options"

You can change the setting of a model value for your model by executing the Change
Model Value (YCHGMDLVAL) command. Be sure to use YCHGMDLVAL, rather than the
0S/400 command, Change Data Area (CHGDTAARA). Changing model values involves
more than changing data areas; many internal model changes are made by
YCHGMDLVAL.

You should always exit from your model entirely when changing model values. Although
the command can appear to run successfully while you are in the model, there is no
guarantee that a full update has taken place.

For more information on using the YCHGMDLVAL command, see the Command
Reference.

Chanding a Function Name

To change a function name

1. Select the file. From the Edit Database Relations panel, type F next to the desired
file and press Enter.

The Edit Functions panel appears, listing the functions for that file.

2. Zoom into the function details. Type Z next to the desired function and press Enter.
The Edit Function Details panel appears, showing the function name at the top.

3. Request to change the function name. Press F8 (Change name).
The function whose name you want to change appears underlined on the panel.

4. Change the function name. Type the desired name. If you want, you can change
any other underlined names to better correspond to the new function name . Press
Enter, then F3 to exit.

50 Building Access Paths

Function Key Defaults

Function Key Defaults

assigns the standard function key usage of your design standard. You can specify
additional function keys in action diagrams or modify existing function key default
values.

For more information about function keys, see the chapter "Modifying Device Designs."

The following table shows the shipped device design defaults for the iSeries.

Meaning iSeries default
*Help FO1/HELP
Prompt FO4

Reset FO5

*Change mode request FO9

*Change mode to Add FO9

*Change mode to Change FO9

*Delete request F11

*Cancel F12

*Exit Fo3

*Exit request FO3

*Key panel request/*Cancel F12

*|GC support F18

Change RDB F22

*Previous page request FO7/ROLLDOWN
*Next page request FO8/ROLLUP

The default is determined by the design standard selected. The iSeries default is used if
the YSAAFMT model value is set to *CUATEXT or *CUAENTY.

Chapter 2: Setting Default Options for Your Functions 51

Chapter 3: Adding Access Paths

This chapter describes how to build an access path. A description of the types of access
paths is provided in the Recognizing the Basic Properties of Access Paths section of the
"Access Paths: An Introduction" chapter.

This section contains the following topics:

Before Adding (see page 53)
Edit File Details (see page 54)

Adding an Access Path (see page 55)

Before Adding

When you create and define your file, CA 2E automatically creates the following three
default access paths for the file: physical, update, and retrieval. These default access
paths have default values equal to those of the model values. Generally, the access path
options are set when you create your model. However, you can change the values for
the access paths at other times.

For more information:

m On how to change the model values or values for a specific access path, see the
instructions in this guide's "Setting Default Options for Your Access Paths" and
"Modifying Access Paths" chapters.

® On model values, see the YCHGMDLVAL command in CA 2E Command Reference
Guide.

Adding access paths to your design model allows CA 2E to provide you with specific
views of the data in the physical files for your application. These views allow you to
retrieve data in a format that most suits your needs with less system overhead.

For more information on tailoring your access paths, see the "Tailoring for Performance"
chapter in this guide.

Chapter 3: Adding Access Paths 53

Edit File Details

Edit File Details

The Edit File Details panel is where you add new access paths to your model, modify
existing access paths, or view the list of the existing access paths for a selected file.

1. Zoom into the file. Type Z next to any relation for the selected file on the Edit
Database Relations panel and press Enter. Alternatively, select option 2 from the
Edit Model Object List panel.

The Edit File Details panel displays with a list of the access paths built over that file,
the source member names, key sequence, and implementation attributes:

Default access paths File details
|

EDIT FILE OETAIL! SYMDL
File name . |. : Branch
Attribute . | 1 REF Field reference file. : *NONE
Document at ign sequence. ! Source library. . . . : SYGEN
GEN format prefix ! AC Distributed : N (Y.N)
fissimilated physical. . . : Enhance SQL Naming. : N (Y,N)
Record not flound message. : Branch NF TMsgid. : USRBO68
Record existls message . . : Branch EX nMsgid. : USRBO6?
? Typ Accesy path Source mbr Key Index options Auto add
0 PHY Physical file UUACREP NOME ATR DHLY
_ UPD Update index UUACREL1 UNIQUE IMMED ATR DHLY
_ RTV Retrieval index UUACRELD UNIQUE IMHED ATR DHLY
_ RSO RSO by Efanch name UUACRELZ FIFO IHMHED ATR DNLY

A A

SEL} 2-Detaild, G-J-Generate, E-STRSEU, D-Delete, L-Ldcks, O-Overrides
H-Hold-/R¢lease, T-Trim, V=Virtjualize, U-Usage, F4qFunc tefs., N=-Narrative
F3=Exit F5=Reload F¢=Funcs. F8=Chanjge name F17?=Serv. H20=Narr. F22=File Locks

Access path name Name to be given Access path Automatic add of
Access path type to generated file ~ implementation

2. Review the details. In the top half of this panel, view the details for the file.

3. Review existing access paths. In the bottom half of the panel, view the list of all
access paths already defined for the file, including the three default access paths
(PHY, RTV, and UPD).

54 Building Access Paths

Adding an Access Path

Adding an Access Path

A list of the available types of access paths follows:

Physical (PHY)
Update (UPD)
Retrieval (RTV)
Resequence (RSQ)
Query (QRY)

Span (SPN)

In addition to the three default access path types created when the file is defined, you
can create additional update and retrieval access paths or resequence, query, or span
access paths using the instructions that follow.

To add any access path, except a PHY access path, use the following steps:

1.

Zoom into the file. Type Z next to any relation for the selected file on the Edit
Database Relations panel and press Enter. Alternatively, you can use selection
option 2 from the Edit Model Object List panel.

The Edit File Details panel displays with a list of any existing (default) access paths
for the file.

Add the new access path. At the next available line on this panel (use the Roll Up
key, if necessary), type the access path value type in the Typ column and the name
of the access path in the Access Path column and press Enter.

Your options for the Typ column are UPD, RTV, RSQ, QRY, and SPN.

For more information on each access path type and when to use it, see the "Access
Paths: An Introduction" chapter in this guide.

CA 2E displays the following information for the new access path:

m Source member name in the Source Mbr field

m Unique and non-unique key selection in the Key field

m Maintenance selection (immediate, delay, and rebuild) in the Index field
View the access path details. Type Z next to the new access path and press Enter.

The Edit Access Path Details panel displays.

At this point, you have defined an access path to the model.

For more information on making changes to the access paths, such as to the keys, or to
add virtuals, see the instructions in the "Modifying Access Paths" chapter of this guide.

For additional instructions that are commonly used when adding RSQ, QRY, and SPN
type access paths, refer to that material in the following sections.

Chapter 3: Adding Access Paths 55

Adding an Access Path

Adding a Physical (PHY) Access Path

Unlike other access path types, you cannot add a physical access path to an existing file.
The PHY access path corresponds to an arrival sequence i OS physical file or an SQL
table. When you create and define your file and then zoom into the file from the Edit
Database Relations panel, CA 2E automatically creates a PHY access path as one of the
three defaults.

For more information on creating and defining a file and instructions on assimilating a
physical file, see the "Creating/Defining Your Data Model" and "Assimilation" chapters
in Defining a Data Model.

Adding a Resequence (RSQ) Access Path

Once you add the RSQ access path, follow the instructions in the preceding section,
Adding an Access Path. At the Edit Access Paths Format Entries panel, you can also
identify the new key sequence order:

EDIT ACCESS PATH FORMAT ENTRIES SYMDL
File name : Customer Attribute . : REF
Access path name. : RSO by customer name Type. . . . : RSO
Format text ! Customer
Basedon. : Customer Format No . : 1
GEN Key Altcol Ref
7 Field Name Type no. Dsc seq cnt
B Customer code CDE RECD A 1
_ Customer name TET AFTX® K 1 _ 1
_ Customer address TAT AGTX A o 1
_ Customer city TET AHTX®] _ 1
_ Customer country TXT AITY A _ 1
_ Customer postal code CDE AFCD A o 1
_ Customer phone number HBR ACHR A _ _ 1
_ Customer status STS ACST A _ _ 1
_ Customer credit linmit NBR ADNB A _ 1
_ Customer state TET AOTX A _ _ 1
_ Customer Allow Credit STS AGST A o 1
SEL: Z-Field details, L-Locks.
F3=Exit F7=Relations

Changing the Key Sequence
1. Remove the old key sequence order from the Key no. column.
2. Add the new key sequence order in the Key no. column. Ascending or descending

sequence can also be specified for each field in the key sequence.

Note: Lower key numbers indicate a higher key order or a major key. The key sequence
numbering should be unique.

56 Building Access Paths

Adding an Access Path

Adding a Query (QRY) Access Path

Once you add the QRY access path, following the instructions in the preceding section,
Adding an Access Path, CA 2E creates and generates default values for three auxiliary
objects for DDS only. Each object type has its own source, either DDS or CL, that is held
in the appropriate source file in the generation library. These objects include:

m Logical file, which is based on the physical file whose data is being referenced.

m Physical file, which never contains data and is used to define a record format and
keys to any HLL program generated for a function based on the QRY access path.

m CL program, which executes the Open Query File (OPNQRYF) command. This
command is called at execution by any program generated for a function based on
the QRY access path.

For more information on how the auxiliaries are implemented, see the Implementation
table in the "Generating and Compiling" chapter in this guide.

Chapter 3: Adding Access Paths 57

Adding an Access Path

Adding a Span (SPN) Access Path

The SPN access path is a multi-format view that allows views of two or more formats.
The SPN access path can only be specified over files with Owned by or Refers to
relationships. The SPN access path must be created over an owning or referred to file.

Once you add the SPN access path, following the instructions in the preceding section,
Adding an Access Path, you can also add the new format entries:

1. View the SPN access path. Press F9 from the Edit Access Path Details panel to
select formats.

The Display Access Path Formats panel displays where you select the format.

2. Select the primary format. Type an X next to the primary format for the specified
file and press Enter.

Note: You always select the Refers to or Owned by file first.

The Edit Access Paths Details panel redisplays which shows the format selection
indicated by the number in the Seq column next to the format.

3. Repeat the above process for each format. Follow Steps 1 and 2 to select the
secondary format.

EDIT ACCESS PATH DETAILS SYMDL
File name 1 Order Attribute . : REF
Access path name. . . ! Order and Details Type. . . . : SPN

Unigque or duplicate order
Index maintenance cption
Alternate collating table

(U-Unique, F-FIFO, L-LIFO,C- FCFO ' '-Undef ined)

u
I (I-IMMED, D-DLY, R-REBLD)

Allow selectromit : _ (8-8tatic, D-Dynamic, ' '-None)

Gereration mode . . . : M (M-MDLVAL, D-DDS, S-SOL)

Source member name . . : UUAFRFI3

Source member text . . : Order Order and Details
Format GEN Format text Associated

7 Seq name pfx (Based on file) Retrieval access path

_ _ 1 FAFREAZ AF Order Retrieval index

! __2 FAGCPA3 AG Order Detail Retrieval index

SEL: Z2-Entries, R-Rels, S§-Sel-omit, A-Assoe.acp, T-Trim, Y-Virtualize, D-Delet
F3=Exit F5=Reload F8=Rename F9=Add formal F2B0=Narrative

58 Building Access Paths

Adding an Access Path

Note: The keys of the second format must include all of the keys of the first format,
in the same order. Any additional keys on the second format must be sequenced
after the first format keys.

Once you have completed the preceding steps, you have added the SPN access
path. To view the entries on the format and change the key order, at the Edit
Access Path Details panel, perform the following.

Zoom into the format. Type Z next to the format name of the format.

The Edit Access Path Format Entries panel displays with a list of the details (fields),
field type, source name, type, key number, alternate collating sequence, and
reference count for your format.

Change the key order number for the format. At the Edit Access Path Format
Entries panel, type the different sequence for the key order numbers and press
Enter.

CA 2E stores the key sequence.

Chapter 3: Adding Access Paths 59

Chapter 4: Modifying Access Paths

This chapter explains how to modify an existing access path; it contains nine topics that
identify where you can modify the access paths.

Once you add access paths to your model, you can modify the details, values, or options
you selected. CA 2E provides sensible defaults for the selections and protects the values
that should not be changed. However, in creating your own application, you may need
to change some of the defaults based on your own organization's application design
conventions. These procedures walk you through the process.

This section contains the following topics:

Before You Begin (see page 61)

Before Modifying (see page 62)

Building Distributed Relational Database Applications (see page 66)
Modifying Access Path Details (see page 67)
Modifying Access Path Format Entries (see page 75)
Modifying Access Path Relations (see page 79)
Modifying Virtual Field Entries (see page 82)
Choosing Select/Omit Criteria (see page 86)
Changing a Referenced Access Path (see page 91)
Modifying Access Path Auxiliaries (see page 94)
Understanding Access Path Auxiliaries (see page 95)

Before You Begin

When an access path is created, it is created with defaults based on your model values.
Some of the model values are specifically used with access paths. By changing the
options for one of these model values, it is possible to modify the access paths if your
application design warrants the changes.

For more information about:

m The types of access paths available in CA 2E, see the chapter "Access Paths: An
Introduction"

m The default values for access paths and instructions on how to change them, see
the chapter "Setting Default Options for Your Access Paths"

m How to add access paths to your model, see the chapter "Adding Access Paths"

m How to generate and compile an access path, see the chapter "Generating and
Compiling"

Chapter 4: Modifying Access Paths 61

Before Maodifying

Before Modifying

This topic describes navigational techniques and aids used in the subfile selection area
of the left margin of the panel and the selection options found in the command text
area at the bottom of the panels. This topic also identifies procedures for adding and
removing virtual fields, holding and locking access paths, and displaying access path
references.

Navidational Techniques and Aids

CA 2E provides you with ways to navigate to different panels other than by using
function keys. CA 2E identifies a number of standard line selection values usually found
in the command text area at the bottom of the panel.

For example, you can use Z to zoom into a file or D to delete. When you place one of
these selections next to a file in the subfile selection area of your Edit Database
Relations panel and press Enter, CA 2E executes the action.

For more information about navigation, see the following:

m The Navigation Facilities section of the chapter "Using Your Model" in the
Administrators Guide

m The Editing Model Object Lists section of the chapter "Managing Model Objects" in
Generating and Implementing Applications

Automatic Add Options

Each access path initially contains all of the relations for the file on which it is based, but
none of the virtuals. If you add a new relation to a file, the effect on the access path is
controlled by the Automatic Add setting. Following are the three Auto Add settings:

Setting Description

*Attr Only Only attributes are added (physical file changes).

*All Both virtuals and attributes are added.

*Held No changes are made to the access path. This prevents level
checking.

62 Building Access Paths

Before Maodifying

Changding the Auto Add Setting

Do the following to change the Auto Add setting:

1. Zoom into the file.

Type Z next to any relation for the selected file on the Edit Database Relations panel

and press Enter.
The Edit File Details panel displays.
2. Toggle the Auto Add setting.

At the Edit File Details panel, type H next to the selected access path and press
Enter.

The allowable Auto Add settings and defaults are as follows.

Access Path Atr Only Held All

PHY Default No No
UPD Default Yes No
RTV Default Yes Yes
RSQ Default Yes Yes
QRY Default Yes Yes

A refreshed panel displays with the indicator ALL, ATR ONLY, or HELD showing that
the selected access path has changed its Auto Add setting.

Note: The key relations (Known by, Owned by, and Qualified by) are added to the access
path regardless of the Auto Add setting. These relations must always be present on all
access paths for the file.

If a relation is added to an access path and functions that use the access path already
exist, the entries that result from resolving the new relations are added to any device
designs (reports and panels) used by the functions. For example, if the entries are not
key fields on the access path, they will be added as hidden fields to the device designs.

If they are key fields on the access path, they are added as input fields to the device
designs. The device designs may therefore require readjustment before they can be
successfully regenerated.

For more information about readjusting the device designs, see the "Modifying Device
Designs" chapter of Building Applications.

Chapter 4: Modifying Access Paths 63

Before Maodifying

Trimming an Access Path

You can remove all virtuals from an access path using the Trim option.

To trim an Access Path

1.

Zoom into the file.

Type Z next to any relation for the selected file on the Edit Database Relations panel
and press Enter.

The Edit File Details panel displays.
Trim the Access Path.

At the Edit File Details panel, enter T next to the selected access path and press
Enter. Repeat the action to confirm.

Note: You can also trim a format using the Edit Access Path Details panel.

If you trim an access path that has Auto Add set to ALL, Auto Add is reset to ATR
ONLY.

Virtualizing an Access Path

You can add all virtual fields to an access path using the Virtualize option.

To virtualize an access path

1.

Zoom into the file.

Type Z next to any relation for the selected file on the Edit Database Relations panel
and press Enter.

The Edit File Details panel displays.
Virtualize the Access Path.

At the Edit File Details panel enter V next to the selected access path and press
Enter. You need to repeat the action to confirm.

Note: You can also virtualize a format of an access path using the Edit Access Path
Details panel.

If you virtualize an access path that has Auto Add set to Held, it will be reset to All.

Locking an Access Path

CA 2E supports two types of object locks: temporary and permanent.

64 Building Access Paths

Before Maodifying

Temporary Locks

Permanent Locks

Temporary locks are imposed automatically by CA 2E to prevent two users from working
on the same object at the same time. These locks are normally cleared by CA 2E when
the object is no longer in use. Temporary locks hold the access paths so that they can be
changed only by one user at a time. This lock is automatically placed on each CA 2E
object while it is in use.

If you are using an object and leave the model abnormally, such as with a subsystem
termination or power failure, a temporary lock can be left on the object. This lock now
prevents you from accessing the object. To remove this inactive temporary lock, select L
from the bottom of the Edit File Details panel to view the locks in your model. CA 2E
automatically removes the locks no longer required.

Permanent locks can be placed by the designer on any object to prevent any
modification or generation of that object. These locks stay in effect, even if the object
and model are not in use, until they are removed by the designer. Permanent locks can
be placed on CA 2E objects. A permanent lock prevents users from changing a CA 2E
object. For designers to add and remove permanent locks, they must have *OBJOWN
rights to the YMDLLIBRFA data area.

For more information about locks, see the section Locking Objects in the "Using Your
Model" chapter of the Administration Guide.

Displaying Usades for Access Paths

To view a list of where each access path is used in the model view the usages, as
follows:

1. Access the Edit File Details panel.
2. Enter U or F next to the selected access path and press Enter.

The Display Model Usages panel displays with a list of all model objects that use the
selected access path.

For more information about usages, see the Impact Analysis section of the "Managing
Model Objects" chapter in the Generating and Implementing Applications guide.

Chapter 4: Modifying Access Paths 65

Building Distributed Relational Database Applications

Building Distributed Relational Database Applications

This topic discusses Distributed Relational Database Architecture (DRDA). DRDA is IBM's
architecture that provides access to data distributed across various machines. The
objective of DRDA is to provide the user, via a high-level programming language, access
to relational databases and files that reside on multiple machines.

Specifying Distributed Files

CA 2E lets you flag any files you create for DRDA on the Edit File Details panel. The
distributed flag indicates whether the file is distributed or local. The field has two
values; Y means it is distributed and N means it is local. The default is N. YGENRDB is the
model value that specifies the relational database used when distributed functions are
used. If it is set to *NONE, the flag is ignored regardless of its content.

AY implies that any access paths that are based on this file can conceivably exist on a
remote machine. Files initially designed and created as Distributed N can be changed to
Distributed Y, just as files created as Distributed Y can be changed to Distributed N.

Note: Any functions built over this file must be regenerated and recompiled to contain
the distributed functionality.

For more information about Distributed Relational Database Architecture see the
"Distributed Relational Database Architecture" chapter of the Generating and
Implementing Applications guide.

66 Building Access Paths

Modifying Access Path Details

Modifying Access Path Details

This topic discusses use of the Edit Access Path Details panel including specifying
unique/duplicate key retrieval sequence, access path maintenance, alternate collating
sequence, select/omit criteria, generation mode, and changing source member text and
names.

Access paths are implemented as separate i OS objects. You can specify various
implementation options for each access path such as the i OS object name for the logical
file and whether the access path maintenance will be Rebuild, Delay, or Immediate. CA
2E provides defaults for those options and protects the values that should not be
changed.

For instance, i OS requires that immediate access path maintenance be specified if you
specify the DDS UNIQUE keyword. The values allowed for the implementation details
depend on the access path. A table of i OS access path implementation attributes

follows.

(1) (2) (3) (4) (5)
Access Path Type Unique or Dup Access Path Alt Col Selection

Key Sequence Maint. (DDS only)

(DDS only)
PHY Physical - - - -
UPD Update (default) u I - -
UPD Update U/L/F/ /C I,D,R - -
RTV Retrieval (default) U I - S/D
RTV Retrieval U/L/F/ /C I,D,R - S/D
RSQ Resequence U/L/F/ /C I,D,R Yes S/D
QRY Query F I,D,R - D
SPN Span U/L/F/ /C I,D,R Yes S/D

Chapter 4: Modifying Access Paths 67

Madifying Access Path Details

The following legend applies for the access path types:

(1) Unique key status (DDS unique keyword or SQL unique
keyword with create index statement). U indicates unique;
if not unique, see note (2). The default UPD and RTV access
paths must be unique.

(2) Duplicate key sequence for DDS only (L=LIFO, F=FIFO,"
'=undefined, C=FCFO)

(3) i OS access path maintenance (I=*IMMED, R=*REBLD,
D=*DLY);

for QRY access paths (I=*FIRSTIO, D=*MINWAIT,
R=*ALLIO). See the following table.

(4) Alternative collating sequence table for DDS only (DDS
ALTCOL keyword)

(5) Selection type (S=static, D=dynamic) (DDS DYNSLT
keyword)

The following table shows the effect of each of the Access Path Maintenance options
depending on whether this option is implemented in DDS, CL, SQL or DDL.

Edit Access Method Used to Implement the Access Path Maintenance Option
Path Details
Panel
Maintenance
Option
(1)
DDS OPNQRYF saL DDL
(Non-QRY command
Access Paths) (QRY Access
Paths)
| (Immediate) *IMMED *FIRSTIO Create Index Create Index
D (Delay) *DLY *MINWAIT No Index No Index
R (Rebuild) *REBLD *ALLIO No Index No Index

68 Building Access Paths

Modifying Access Path Details

(1) For QRY access paths the access path maintenance options are implemented using
OPTIMIZE parameter values on the i OS

OPNQRYF command.

For more information about parameters for the OPNQRYF command, see IBM i Control
Language Reference.

Editing Access Path Details

You can display and change the details for a CA 2E access path using the Edit Access
Path Details panel.

EDIT ACCESS PATH DETAILS " SYHDL
File name : Customer Attribute . : REF
Access path name. : Retrieval index Type. . . . : RTV

Unique or duplicate order : U (U-Unique,F-FIFO,L-LIFC,C-FCFO,' '-Undefined)
Index maintenance option : I (I-IMMED, D-DLY, R-REBLDO)
Alternate collating table :

Allow selectromit : _ (S5-Static, D-Dynamic, ' '-None)
Generation mode . . . : M (M-MDLVAL, D-DDS, S5-SQL)
Source member name . . : UUADRELY
Source member text . . ! Customer Retrieval index
Format GEN Format text Associated
7 Seq name pfx ({(Based on file) Update access path
1 FADRFAD AD Customer Update index

SEL: Z-Entries, R-Relations, S-Select-omit, RA-Assoc.acps, T-Trim, Y-Virtualize
F3=Exit FB8=Rename F20=Narrative

You can display and edit the following details for an access path using the Edit Access
Path Details panel.

m Unique/Duplicate Key sequence
m Access Path Maintenance

m Alternate Collating Sequence

m Select/Omit Criteria

m Generation Mode

m Source Member Name and Text

Chapter 4: Modifying Access Paths 69

Madifying Access Path Details

Specifying Unique/Duplicate Key Retrieval Sequence
CA 2E lets you determine if the key values of the access path are unique or duplicate
and, if they are duplicate, what the sequence would be.
1. Zoom into the file.

From the Edit Database Relations panel, type Z next to the selected file and press
Enter. The Edit File Details panel displays.

2. Zoom into the access path.

Type Z next to the selected access path and press Enter. The Edit Access Path
Details panel displays.

3. Specify the key sequence.

Change the key sequence by entering the selected option in the Duplicate Sequence
field and press Enter.

The possible options are:

m U for unique (this requires Immediate maintenance).
m Fforfirstin, first out (FIFO).

m Lforlastin, first out (LIFO).

m Cfor first changed, first out (FCFO).

m Blank means an unspecified sequence is used.

For more information about the unique/duplicate key sequence, see IBM i DDS
Reference Manual and IBM i Database Guide.

70 Building Access Paths

Modifying Access Path Details

Specifying Access Path Maintenance

CA 2E lets you select the type of maintenance for your i OS access paths. i OS maintains
all access paths immediately, while they are open, regardless of the maintenance
option. However, when the file is closed, the access path maintenance option specifies
to i OS how the access path should be maintained.

The type of access path maintenance you specify depends on the number of records,
the frequency of additions, deletions, and updates to a file, and the frequency of opens.
If you do not specify the type of maintenance, the default is immediate maintenance.

Specify access path maintenance. At the Edit Access Path Details panel, enter or change
the maintenance selection for updating the records in the Maintenance field and press

Enter.

The access path maintenance options are:

Option Description

I=*IMMED Immediate Maintenance. The i OS access path is maintained as
changes are made to its associated data, regardless of whether the i
Os file is open.

For QRY access paths, the OPNQRYF command's OPTIMIZE
parameter is set to *FIRSTIO, which minimizes time required to open
the file and to retrieve the first buffer of records from the file.

D=*DLY Delay maintenance. Any maintenance for the i OS access path is
done the next time the associated file is opened.

For QRY access paths, the OPNQRYF command's OPTIMIZE
parameter is set to *MINWAIT, which minimizes delays while reading
the file.

R=*REBLD Rebuild maintenance. The i OS access path is completely rebuilt each
time the file is opened.
For QRY access paths, the OPNQRYF command's OPTIMIZE
parameter is set to *ALLIO, which attempts to minimize total
processing time.

Note: Specify | (immediate maintenance) for all files that require unique keys in order to
ensure uniqueness for inserts and updates.
For more information:

m About access path maintenance, see the "Tailoring for Performance" chapter and
the IBM i DDS Reference Manual.

m OntheiOS OPNQRYF command, see IBM i Control Language Reference.

Chapter 4: Modifying Access Paths 71

Madifying Access Path Details

Specifying Alternate Collating Sequence

CA 2E lets you specify a keyword to direct the i OS program to use an alternative
collating sequence table when sequencing the records.

A typical example is to use the i OS-supplied translate table, QCASE256, to make the
collating sequence for both upper and lower case the same. This creates an access path
that suppresses unwanted upper/lower case discrepancies in the collating sequence
while preserving the upper/lower case differences in the data. Any field used as a key
for this access path should be similarly translated (uppercase only).

Specify Alternate Collating Sequence. At the Edit Access Path Details panel, enter or
change the keyword name of the alternative collating sequence table in the Alternating
Collating Table field and press Enter.

Use the i OS Create Table (CRTTBL) command to create the table or use an existing i OS
table, such as QSYSTRNTBL or QCASE256.

Specifying Select/Omit Criteria

CA 2E allows you to specify select/omit criteria that filter your view of the records for
the RTV, RSQ, SPN, and QRY type access paths.

For more information about select/omit criteria, see the section Choosing Select/Omit
Criteria in this chapter.

Specify select/omit criteria. At the Edit Access Path Details panel, enter or change the
select/omit criteria at the Allow Select/Omit field and press Enter.
Options are:

m S—Static applies the selection and omission criteria as the records are added
(stored)

m D—Dynamic specifies the selection and omission of logical file records performed
during processing, instead of when the access path (if any) is maintained

m Blank—No selection/omission criteria

Note: Dynamic must be specified if there are any virtual fields on the access paths. For
QRY access paths, dynamic will be defaulted if required.

72 Building Access Paths

Modifying Access Path Details

Specifying Generation Mode

CA 2E lets you specify the mode in which you generate the source (Data Definition
Language).

Specify Generation Mode. At the Edit Access Path Details panel enter or change the
generation mode at the Generation Mode field and press Enter.

Options are:
m D—for DDS
= S—forSQL

m M—for Model value
m L—for DDL
In CA 2E, some combinations of files and access paths that use different Data Definition

Languages are permitted, while some are not. For example, you cannot have a CA 2E
SQL logical file over a CA 2E DDS physical file. The following table outlines these rules:

CA 2E Logical
Access Path

CA 2E Physical Access DDS sQL DDL
Path
DDS Yes No No
sQL Yes Yes Yes

Chapter 4: Modifying Access Paths 73

Madifying Access Path Details

SQL and DDS Joins

Copying an Access

To join information from tables/files, SQL uses inner joins and DDS uses outer joins.
Outer joins are not part of the American National Standards Institute (ANSI) standard for
SQL. If you switch an access path from DDS to SQL or vice versa, be aware that the same
records might not be included.

The following examples illustrate an SQL inner join and a DDS outer join, where the joins
resolve to a different set of records:

Order File Customer File
(Primary File) (Secondary File)
Order # Cust. # Order Date Cust. # Cust. Name
001 1 4/1/92 1 JONES
002 2 4/2192 3 SMITH
003 3 4/3/92 4 BROWN
Resulting Joined file—SQL
Order # Cust. # Cust. Name|Order Date
Inner Join 001 1 JONES 4/1/92
003 3 SMITH 412192
Resulting Joined file—DDS
Order # Cust. # Cust. Name|Order Date
Quter Join 001 1 JONES 4/1/92
002 2 * 4/2192
003 3 SMITH 4/2192
* = spaces

In the preceding example, the customer record for Order # 002, Cust. # 2, does not exist
in the Customer file. In the SQL join file, the record for Order # 002 is dropped from the
file. In the DDS join file, the record for Order # 002 is included in the file. Note that the
virtual field Cust. Name is filled with blanks in the DDS join file.

Path Generated with SQL or DDL

If you use the Copy Model Objects (YCPYMDLOBJ) command to copy an SQL or DDL
generated access path or function to a model that does not have an SQL environment,
YCPYMDLOBIJ runs successfully, but you need to create an SQL collection for the
receiving access path before you can generate source.

74 Building Access Paths

Modifying Access Path Format Entries

Changing Source Member Text and Names

CA 2E lets you change the source member names and text created.

Change the text or name. At the Edit Access Path Details panel, change the name in the
Source Member Name field or the text in the Source Member Text field and press Enter.

Modifying Access Path Format Entries

This topic provides information on identifying access path format text and keys and
instructions on changing the key sequence and editing access path format entries.

An access path format shows which fields are present in the access path. It also
indicates which of those fields are key fields for the access path, and the order in which
the key fields appear.

SPN type access paths can have more than one format. Other types of access paths have
only one format.

Identifying Access Path Format Text

An access path format can have up to fifty characters of descriptive text. The default
text is a concatenation of the file name and the access path name. The text appears in
the Format Text field on the Edit Access Path Format Entries panel.

Identifying Access Path Format Keys

The keys of UPD and RTV access paths come from the key relations for the based-on file
and cannot be changed.

The keys of the RSQ, SPN, and QRY type access paths are initially defaulted to the
entries defined by the key relations but can be changed. Keys can be sequenced in
ascending or descending order.

For more information about the i OS limit on the number of keys that can be specified,
see IBM i Database Guide.

If an alternative collating table is specified for the access path, you can specify whether
to use it to collate particular key fields. You can use this panel to flag those keys that are
to be alternately collated.

Chapter 4: Modifying Access Paths 75

Modifying Access Path Format Entries

Changing the Key Sequence

Do the following to change the key sequence
Zoom into the file.

At the Edit Database Relations panel, type Z next to any relation for the selected file
and press Enter. Alternatively, you can use selection option 2 from the Edit Model
Object List panel.

The Edit File Details panel displays.

Zoom into the access path.

Type Z next to the selected access path and press Enter.
The Edit Access Path Details panel displays.

Zoom into the format.

Type Z next to the selected format and press Enter.

The Edit Access Path Format Entries panel displays:

EDIT ACCESS PATH FORMAT ENTRIES SYHDL
File mame ! Customer Attribute . @ REF
Access path name. : RSO by customer name Type. . . . : RBOQ
Format text : Cuslomer
Based on. : Customer Format No . : 1
GEN Key Altcol Ref
7 Field MName Twpe no. Osc seq ont
0 Customer code CDE AECD [_ 1
_ Cuslomer name THT AFTX K 1 _ 1
_ Customer address TXT AGTX A - 1
_ Customer city TXT AHTX A _ 1
_ Customer country TXT AITX A - - 1
_ Customer postal code CDE AFCD 1] _ 1
_ Customer phone number NBR ACHB A . _ 1
_ Customer status STS ACST A o 1
_ Customer credit limit NBR ADNB A o 1
_ Customer state TXT AOTX A _ 1
_ Customer Allow Credit STS AGST A _ 1
SEL: Z2-Field details., L-Locks.
F3=Exit F7=Relations

Change the key sequence.

Change the key order as appropriate by changing the numbers in the Key no.
column.

Numbers represent the order of the fields that make up a composite key. Ensure
that the key sequence numbers are unique. Low key order indicates the sequence
of the major keys.

Generate the access path.

For the new specification to take effect, you must regenerate the access path.

For more information about how to generate an access path see the "Generating and
Compiling" chapter.

76 Building Access Paths

Modifying Access Path Format Entries

Editing Access Path Format Entries

The presence of a field on an access path format (an access path entry) is controlled by
the relations specified for the access path. By default, all the relations specified for the
based-on file are declared to be present on an access path so that all the fields from the
file are initially present. By dropping particular relations from an access path, you can
omit fields from the access path's format.

To display and change the relations for an access path, use the Edit Access Path
Relations panel. To display the fields that are present on the access path format, use the
Edit Access Path Format Entries panel.

You can use the Edit Access Path Format Entries panel to specify an alternative key
order for RSQ, QRY, and SPN type access paths. CA 2E lets you edit access path format
entries using the Edit Access Path Details panel. Access path formats are created
automatically for all access path types except SPN. For SPN access paths you need to
add formats explicitly.

For more information on adding SPN access path format entries, see this guide's
"Adding Access Paths" chapter.

Note: Relations are present on an access path if they were added to the based-on file
after a hold was specified on the access path.

Editing Physical File Format Entries

The physical file format entries for an assimilated CA 2E physical access path can be
edited using the Edit Physical File Format Entries panel. You use the panel to specify
override values to be used when generating source.

This panel allows you to specify:

m That the fields in a given database file have different implementation names from
those used in the logical files based over them

m That the fields occur in a different order from that shown on the Edit Access Path
Entries panel

Chapter 4: Modifying Access Paths 77

Modifying Access Path Format Entries

Altering Field Sequence or Implementation Name

5.

Do the following to alter the field sequence or implementation name:
Zoom into the file.

At the Edit Database Relations panel, type Z next to any relation for the selected file
and press Enter. Alternatively, you can select option 2 from the Edit Model Object
List panel.

The Edit File Details panel displays.

Zoom into the physical access path of the assimilated file. Type Z next to the PHY
access path and press Enter.

The Edit Access Path Details panel displays.

Zoom into the format.

Type Z next to the format and press Enter.

The Edit Access Path Format Entries panel displays.
Access the Edit Physical File Format Entries panel.
Press F8.

The Edit Physical File Format Entries panel displays:

Op: RMG BMGS1 8,29-97 16:26:58

EDIT PHYSICAL FILE FORMAT ENTRIES SYMDL
File name . . : Order Attribute : REF
Aceess path . @ Physiecal file Type. . . @ PHY
Format text . : Order

********** OVERRIDE-——————————
Field Type Length Seq DDS Name Type Length
Order code CDE A 7] 3.0 AFAJCD
Order date DI# A 10 4.0 AFABDT _
Order status 5TS A 1 1.0 AFAEST _
Customer code CDE A 6 2.0 AFAECD _
Employes code CDE A) 7.0 AFAGCD _
Product code CDE A b 6.0 AFARCD _
Effective date DT A 10 5.0 A _

4 A

F3=Hzit F5=Reload
Fields in format Override Override

order name

Change the DDS name or the file sequence as appropriate and press Enter.

78 Building Access Paths

Madifying Access Path Relations

Modifying Access Path Relations

This topic discusses required relations and provides instructions on editing access path
relations.

The relations for an access path are composed of the set or subset of a file's relations
that apply to a particular access path. For a specific access path belonging to a given file,
only some of the relations specified for the file need to apply.

In other words, a particular access path may not require all of the fields and relations
from the file to be present on the access path. Each access path may have its own
subset of the file's attributes and relations. When you drop file-to-file relations, such as
Refers to, those key fields associated with the relation are dropped as are all associated
virtual fields. The following is an illustration of access path and file relations.

Eile A
A Known by b
A Has c
A Refers to D
A Refers to E
[} [} A
[|
Access path (1) Access path (2) Access path (3)

A Known by b A Known by b A Known by b
A Has c A Has c

A Refers to D A Refers to D
A Refers to E A Refers to E

For more information about relations, see the Using Relations section of the
"Understanding Your Data Model" chapter in Defining a Data Model.

Understanding Required Relations

The key level relations for a file (Known by, Owned by, and Qualified by) must be
present on all access paths for the file.

A PHY type access path always contains all of the relations for the file on which it is
based. On UPD and RTV type access paths, define the entries resulting from the
resolution of the relations as the keys of the access path. On other access path types,
the relations merely cause the fields to be present on the file, not necessarily as key
fields.

For more information about how to define specific required relations, see the next
section Adding Relations to a File.

Chapter 4: Modifying Access Paths 79

Madifying Access Path Relations

Adding Relations to a File

Each access path initially contains all the relations for the file on which it is based. If a
new relation is added to a file, it will be added to the list of access path relations for
each of the file's access paths provided that the access paths are not held. Held access
paths remain unchanged, as do any functions attached to them.

If a relation is added to an access path and functions already exist that use that access
path, the entries that result from resolving the new relations will be added to the
function's device designs as follows:

m If they are not key fields on the access path, they will be added as hidden fields to
the device design.

m [f they are key fields, they will be added as input fields to the device designs.

80 Building Access Paths

Madifying Access Path Relations

Editing Access Path Relations

CA 2E lets you display and edit access path relations with the Edit Access Path Relations
panel. On this panel, you can reinstate or drop relations from an access path.

1.

4.

Zoom into the file.

From the Edit Database Relations panel, type Z next to any relation for the selected
file and press Enter. Alternatively, you can use selection option 2 from the Edit
Model Object List panel.

The Edit File Details panel displays.

Zoom into the access path.

Type Z next to the selected access path and press Enter.
The Edit Access Paths Details panel displays.

Select the access path relation.

Type R next to the selected access path and press Enter.

The Edit Access Path Relations panel displays:

EDIT ACCESS PATH RELATIONS SYMDL
File name : Customer Attribute . : REF
Access path name. : Customers by name Type. . . . : RSO
Format text : Customer
Based on. ! Customer Format No . ! 1
7 D Verb Filesfor Access path/Function
B * Known by Customer code
_ % Has Customer name
_ * Has Customer address
_ % Has Customer city
_ * Has Customer country
_ % Has Customer postal code
_ * Has Customer phone number
+
A-Ref Accpths, S-Select F4, T-Default F4, '+'/'-'-Add/Rmu relation, V-Virtual
F3=Exit F7?=Eniries

Specify the access path relations.

Type + (plus) or - (minus) next to the relations you want to reinstate or remove
from the access path and press Enter.

Each access path initially contains all of the relations for the file on which it is based. If a
new relation is added to afile, it is added to the list of access path relations for each of

the file's access paths except those access paths specified to be held. Held access paths
remain unchanged as do any functions attached to them.

Chapter 4: Modifying Access Paths 81

Modifying Virtual Field Entries

Modifying Virtual Field Entries

This topic explains how to identify relations with virtual fields, specify file and access
path relations, and tailor virtual fields for access paths. This topic also contains
instructions on editing virtual field entries.

A virtual field specified on a relation of a file is added, by default, to each instance of
that relation on a particular access path of the file.

Understanding Access Path Virtual Field Entries

An access path virtual field is a field that is logically, rather than physically, present on
an access path. Although the field does not reside on the based-on physical file, a view
of it is available through the relations that exist for the access path.

It is possible to omit particular virtual fields from a particular access path. The virtual
fields for an access path can be selected only from among fields that have been
specified as virtual fields for the file.

For example, if Customer file has five fields (Customer no., Branch name, Branch no.,
Customer name, and Customer address), and if Customer file Refers To Branch file with
only Branch name field as a virtual field, only the Branch name field is available as a
virtual field on all access paths of Customer file.

Branch Known by Branch no.
Branch Has Branch name
Branch Has Branch address
Customer Known by Customer no.
Customer Has Customer name
Customer Has Customer address
Customer Refers to Branch

The Customer Refers to relation adds the field Branch No. to the Customer file.
Virtualization allows you to add the field Branch name as a virtual field to the Customer
file. You can include or drop this virtual field from any access paths over the Customer
file.

82 Building Access Paths

Madifying Virtual Field Entries

Identifying Relations with Virtual Fields

CA 2E lets you specify only virtual fields on the Owned by, Refers to, and Extended by
relation types. Virtual fields can be used only as read-only fields in standard functions.
This read-only field is implemented as a join logical file or SQL view. It checks on the
generation mode and access path type.

Different access paths for a file can contain different combinations of relations, and
each file-to-file relation on the access path can have a different set of virtual fields
associated with it.

For more information about files and relations, see the chapters "Understanding Your
Data Model" and "Creating/Defining Your Data Model" in Defining a Data Model.

Chapter 4: Modifying Access Paths 83

Modifying Virtual Field Entries

Specifying File and Access Path Relations

Specifying virtual fields is a two level process: For a field to be used as a virtual field, you
must specify it as a virtual field on both the file relations and the access path relations.

In the previous example, the field Branch address is not available as a virtual field on any
access path of the Customer file, as it is not specified as a field on the relations for the
file.

For more information about:

m Specifying virtual fields on a file, see the Adding/Modifying Virtual Fields section in
the "Maintaining Your Data Model" chapter of Defining a Data Model.

m Specifying virtual fields on an access path, see the Tailoring Virtual Fields for Access
Paths section later in this chapter.

The following example shows how access paths can have subsets of the relations on the

file:
File D
D Known by w
D Has X
D Has y
- | D Has z
File A 1o Has .
A Known by b D Has t
A Has c
A Refers to D
Vrt: x,y,z " File E
A Ref t E
© e:/srt.oh E Known by f
' E Has g
i ? E Has h
[|
Access path (1) Access path (2) Access path (3)
A Known by b A Known by b A Known by b
A Has c A Has c
A Refers to D A Refers to D
Vrt: x,y,z Vrt: z
A Refers to E A Refers to E
Vrt: h

84 Building Access Paths

Modifying Virtual Field Entries

Editing Virtual Field Entries

CA 2E lets you edit the virtual field entries on both the file and the access path. Field
level virtual fields are specified using the Edit Virtual Field Entries panel. Access path
virtual fields are specified using the Edit Access Path Relation Virtual Fields panel.

The file level panel declares that a field is available for use as a virtual field on any of the
access paths for the file. The access path level panel specifies that a virtual field is
present on a particular access path.

1.

Zoom into the file.

At the Edit Database Relations panel, type Z next to any relation for the selected file
and press Enter. Alternatively, you can use selection option 2 from the Edit Model
Object List panel.

The Edit File Detail panel displays.

Zoom into the access path.

Type Z next to the selected access path and press Enter.
The Edit Access Path Details panel displays.

Zoom into the format.

Type Z next to the selected format and press Enter.
The Edit Access Path Format Entry panel displays.
Specify virtual fields.

Press F7 and press Enter.

The Edit Access Path Relations panel displays.

Select the virtual field entry.

Type V next to the selected relation and press Enter.

The Edit Access Path Relation Virtual Field panel displays:

Chapter 4: Modifying Access Paths 85

Choosing Select/Omit Criteria

EDIT ACCPTH RELATION VIRTUAL FIELDS SYHDL

File name Order Attribute . : REF
Access path name. : Retrieval index Type. . . . : RIV
Format text i Order
Based on. : Order Format No . : 1
Relation. : Refers to Customer
for.
GEN Ref
7 0 Field Name ont
B * Customer name AFTY 1
_ ¥ Customer status ACST 1
_ % Customer credit linit ADNB 1

SEL: 2-Field details, '+'-/'-Add-Remove virtual field, L-Locks.
F3=Exit

Note: The selected relation must be an Owned by, Refers to, or Extended by
relation or you will not be able to virtualize the field.

6. Edit the virtual field entry.
Type + (plus) or — (minus) next to the field(s) you want to virtualize and press Enter.

A refreshed panel displays with your choices highlighted.

Tailoring Virtual Fields for Access Paths

It is important to consider the design of your application when specifying virtual fields.
Ensure that the join logicals you set up when you virtualize provide you with the data
you need. This saves the operating system from having to do unnecessary Input/Output
(1/0) to other files.

For more information about tailoring virtuals, see the Using Join Logicals section in the
"Tailoring for Performance" chapter.

Choosing Select/Omit Criteria

This topic provides instructions about how to specify selection and conditions.

Access path selection lets you specify that a particular access path retrieves only the
records from the file that meet specified select/omit criteria, such as those that contain
specified values for particular fields.

For example, you have a personnel file containing records for both full-time and
part-time employees. If you want to obtain a view of only the part-time employees, you
can define an access path with selection on an employee type field that identifies
part-time employees.

86 Building Access Paths

Choosing Select/Omit Criteria

Understanding Select/Omit

CA 2E lets you specify selection using a select/omit set. A given access path may have
none, one, or many select/omit sets specified. If there is more than one set, the sets are
ORed together.

Once a record satisfies a select or omit set, it is either selected or omitted and further
sets are not relevant. If a record does not satisfy a select or omit set, it will be tested
against subsequent sets. If a record does not satisfy any select or omit set, it is omitted
if the last set was a select set and selected if the last set was an omit set.

Each set is made up of one or more conditions that specify the actual values that a field
may take. If there is more than one condition, the conditions within a set are ANDed
together.

For example, if there are two conditions, both must be valid for the entire set to be
valid.

In the following example, the access path suspended order is made of two select/omit
sets: Awaiting Confirmation and Passed Credit Check. Each of the select/omit sets are
defined by one or more conditions.

Accpth Select/Omit set Field Condition Op Value

Suspended
order

Select 001 Passed credit
check 001 Orderstatus Open *EQ H
AND 002 Credit limit Not exceeded *GT 5000

Select 002 Awaiting
confirmation
001 Invoice status Unconfirmed *EQ U
AND 002 Invoice value not zero *GT O

Chapter 4: Modifying Access Paths 87

Choosing Select/Omit Criteria

Specifying Selection

Use the Edit Access Path Select/Omit panel to specify selection and the names of the
select/omit sets that make up the selection criteria. The following steps tell you how to
specify selection.

1.

5.

Zoom into the file.

At the Edit Database Relations panel, type Z next to any relation for the selected file
and press Enter. Alternatively, you can use selection option 2 from the Edit Model
Object List panel.

The Edit File Details panel displays.

Zoom into the access path.

Type Z next to the selected access path and press Enter.
The Edit Access Path Details panel displays.

Select the format.

Enter S next to the selected format and press Enter.
The Edit Access Path Select/Omit panel displays.

Note: The Allow Select/Omit access path option must be set to either
SorD.

Specify selection.

Type S for select or O for omit in the S/O column and the text description to
indicate the name for the selection criteria set.

EDIT ACCESS PATH SELECT-OMIT SYHDL
File name : Customer Attribute . : REF
Access path name. : Retriewval index Type. . . . : RTV
Format text ! Customer
Based on. ! Customer Format Mo . : 1
7 670 Seq Text description

Select Active Customers Only

I T T O T T Y Y Y - I

SEL: 2-Conditions.
F3=Exit F5=Reload F9=Enitries

Zoom into the selection.
Type Z next to the selection to specify the conditions and press Enter.

The Edit Access Path Conditions panel displays.

88 Building Access Paths

Choosing Select/Omit Criteria

Specifying Conditions

Use the Edit Access Path Conditions panel to specify conditions (which are the actual
field conditions that make up a given select/omit set).

1. Specify the condition.

Enter the field and condition name for the selection in the appropriate column. If
you do not know the field or condition name, place a question mark in the
appropriate column and press Enter.

The Display Access Path Format Entries panel or the Edit Field Conditions panel
displays.

2. View the fields or conditions.
Type X next to the selected field or condition and press Enter.
The Edit Access Path Conditions panel displays with the selections.
For more information about how to add conditions, see the Adding/Modifying

Conditions section in the "Maintaining Your Data Model" chapter of Defining a Data
Model.

Select/Omit in DDL Index

In CA 2E r8.7, a new generation mode *DDL is introduced. Using this generation mode,
the existing DDS database can be regenerated to have an SQL type database. You can
still access the existing RLA functions that were built using the DDS database without
regenerating and recompiling them. Prior to CA 2E r8.7, the select/omit criteria was
applicable to *DDS and *SQL generation modes only. Henceforth, the select/omit
criteria is applicable to the *DDL generation mode too.

Considering all the three generation modes, *DDS, *SQL, and *DDL, the following table
displays the location where the Select/Omit criteria get generated.

Generation Mode Allow

YDBFACC=T(TABLE) YDBFACC=G(DBFGEN)

Select/Omit
criteria Settings

DDS Static Select/Omit criteria in
the logical file
Dynamic Select/Omit criteria in
the logical file
sQL Static Select/Omit criteriain Select/Omit criteria in
the Program code the SQL View
Dynamic Select/Omit criteriain Select/Omit criteria in
the Program code the Program code

Chapter 4: Modifying Access Paths 89

Choosing Select/Omit Criteria

Generation Mode Allow
Select/Omit
criteria Settings

YDBFACC=T(TABLE)

YDBFACC=G(DBFGEN)

DDL Static

Select/Omit criteria in
the DDL index

Dynamic

Select/Omit criteria in
the DDL index

As shown, when you regenerate the database as a DDL database, the select/omit
criteria gets generated into the DDL index as a WHERE clause. Any RLA function that
uses the DDL database, can now access the same records that the RLA function has

accessed over the DDS database.

In DDL generation mode, irrespective of the "Allow select/omit criteria" settings being
static or dynamic, the select/omit criteria gets embedded in the DDL index. You do not
have to regenerate and recompile the function. The select/omit criteria are generated
for all the access path types that DDL supports.

Note: The select/omit criteria, over DDL implementation supports RTV and RSQ access

paths.

90 Building Access Paths

Changing a Referenced Access Path

Changing a Referenced Access Path

When an access path includes a relation that refers to another file, the relation always
references an access path. This access path is used by functions for validation and, by
default, this is the access path RTV automatically created by CA 2E. You can, however,
alter the relation so that a different access path is used. This enables you to specify
selection criteria for the relationship.

Using the F4 prompt function assignment, you can change the prompt function assigned
to a file-to-file relation. If you change the access path, then the prompt function will
default to the SELRCD function for that access path.

For more information about function assighment, see the information at the end of this
section.

In a database recording pedigrees, you could specify that Mothers be only female, and
Fathers be only male by specifying the access path selection on the relation.

Mother Father

vl

Animal

The relations you would need to specify the pedigree are as follows:

FIL Animal REF Known by FLD Animal code CDE
FIL Animal REF Has FLD Animal name TXT
FIL Animal REF Has FLD Gender STS
FIL Animal REF Refers to FIL Animal REF
FIL For Mother Sharing:

FIL Animal REF Refers to FIL Animal REF
FIL For Father Sharing:

Chapter 4: Modifying Access Paths 91

Changing a Referenced Access Path

Then, having attached two conditions to gender, Male and Female, you can define two
additional retrieval access paths on the Animal file that select on each gender
respectively.

EDIT FILE DETRILS Hy model

File name ! Animal

Attribute . : REF Field reference file. : =NONE

Documentation sequence. . Source library. . . . : HYGEN

BEN format prefix : AL Distributed : H (Y,N)

Assimilated physical. . . Enhance SQL Naming. : N [Y,N)

Record not found message. : finimal HF Tsgid. : JOROG??

Record exists message . . ! fAnimal EX Msgid. : JARDO78

T Typ Access palth Source mbr Key Index oplions Futo add

_ PHY Physical file HYALREP HOHL ATR DHLY

- UPD Update index AYALRELO UNIOUE InMED ATR OHLY

_ RTV Retrieval index MYALREL1 UNIOUE IHMED ATR DHLY

2 RTV Males index HYALREL2Z UNIOUE INMMED ATR OHLY
RTV Females index HYALREL? URIQUE IHHED ATR OHLY
—_—

EL: 2-Oetails, G-J-Generate, E-STRSEU, D-Delete, L-Locks, 0O-Overrides

H-Hold/Release, T-Trim, V-Virtualize, U-Usage, F-Func refs., N-Narralive

3=Exit f5=Reload F?=funcs. FB8=Change name F1?=Serv. F20=Marr. F22=File Locks

|l
I 2E access paths for file

Z option to transfer to access path details display

92 Building Access Paths

Changing a Referenced Access Path

Having added the new access paths, you can return to the relations for the original
retrieval CA 2E access path and specify that the Refers to relations are to use the
additional CA 2E access paths with gender-specific selection. Thus, fathers must be
male, and mothers must be female.
Follow these steps:
1. Zoom into the access path details.

Type Z next to the selected access path on the Edit File Details panel.

The Edit Access Path Details panel displays.
2. Go to the access path relations panel.

Type R next to the formats and press Enter.

The Edit Access Path Relations panel displays:

EDIT ACCESS PATH RELATIDNS Ay model
File name | Animal Attribute . : REF
Access path name. ! Females index Type. . . . @ RTV
Format text ! Animal
Based on. ! Animal Farmat Mo . 1
T 0 Verb File<for fecess path-Function
B * Enown by Animal code
_ * Has Animal name
_ = Has Gender
_ % Refers to Animal Hales index
Father
fi ® Refers to finimal Retrieval index
Mother A

=Ref Accpths, S-Select Fd, T-Default Fd, '+'+"="=Add-Bmu relation, V-Virtual
J=txit F=Entries

The A option is used to call a subsidiary panel to change the relations
to use the appropriate 2E access pathsin the based-on file.

3. Select the Referenced Access Paths option.
Type A next to the relation and press Enter.
The Display File Access Paths panel displays.

4. Select the access path.

Type X next to the appropriate access path and press Enter.

Chapter 4: Modifying Access Paths 93

Modifying Access Path Auxiliaries

F4 Prompt Function Assignment

CA 2E allows you to change the access path assigned to the file-to-file relation and to
assign a new prompt function over the access path. This can be done at the access path
or function level. Function level overrides take precedence over access path level
overrides.

For more information about F4 prompt function assignment at the function level, see
the SELRCD section of the "Defining Functions" chapter in Building Applications.
To prompt for a new function assignment:

1. Use the instructions on the previous page to get to the Edit Access Path Relations
panel.

2. Type S next to the selected file-to-file relation you want to assign to the access path
and press Enter.

The Edit Function panel displays.

3. Type X next to the selected function and press Enter.
You can select any external function other than Print File (PRTFIL) and the function
can be based over any access path that is valid for the function type you select.

To cancel the function assignment and return to the default function:

1. Type T next to the selected relation.

2. Press Enter.

Modifying Access Path Auxiliaries

This topic provides instructions on editing access path auxiliaries.

To implement QRY type access paths for DDS, use the i OS Open Query File (OPNQRYF)
command. For SQL, use dynamic SQL. In order to do this, CA 2E holds some additional
information for QRY access paths and SQL tables and views with *IMMED maintenance
capability, which is shown on the Edit Access Path Auxiliaries panel. CA 2E generates
default values for the access path auxiliary display when the access path is created.

94 Building Access Paths

Understanding Access Path Auxiliaries

Understanding Access Path Auxiliaries

For DDS Query (QRY) Access Paths

Use the following three types of i OS objects to implement a QRY access path in DDS:
m AniOS logical file based on the real physical file whose data is being referenced.

® Ani OS physical file, which does not contain any data, but is used to define a record
format and keys to any HLL program generated for a function based on the QRY
access path.

m ACLprogram that executes the OPNQRYF command. It is called at execution by any
program generated for a function based on the QRY access path.

Each object type has its own source, either DDS or CL, which is held in the appropriate
source file in the generation library.

All three of the auxiliary objects must be generated and compiled.

You can control the implementation names given to the auxiliary objects by controlling
the names given to the source members generated for them. If the YALCVNM model
value is set to YES, CA 2E will automatically supply source member names.

Note: The current implementation of DDL generation mode uses only *TABLE as data
access method. Therefore, QRY access path is not generated in DDL mode as it uses only
SQL views.

For more information about access path auxiliaries and QRY access paths, see the
"Access Paths: An Introduction" chapter.

For SQL Access Paths with *IMMED Maintenance

When an access path that is implemented in SQL is created with *IMMED index
maintenance, CA 2E also creates an SQL index as an access path auxiliary. You can
suppress generation of the SQL index and also retain *IMMED maintenance capability.

For more information on SQL, see the "SQL Implementation" appendix in the
Administration Guide.

Chapter 4: Modifying Access Paths 95

Understanding Access Path Auxiliaries

For DDL Access Paths with *IMMED Maintenance

When an access path that is implemented in DDL is created with *IMMED index
maintenance, CA 2E creates only an SQL index as an access path auxiliary.

For more information on SQL, see the "SQL/DDL Implementation" appendix in the
Administration Guide.

96 Building Access Paths

Understanding Access Path Auxiliaries

Editing Access Path Auxiliaries

Note: Auxiliaries are not applicable for DDL type file as Views are not created for DDL
type file and only Index with the same name as the source member name is created.
F7=Auxiliaries is not applicable for the DDL implementation.

Use the Edit Access Path Auxiliaries panel to display and change the auxiliary details for
a QRY (or SQL) access path including changing source member names.

1.

Zoom into the file.

At the Edit Database Relations panel, type Z next to any relation for the selected file
and press Enter. Alternatively, you can, select option 2 from the Edit Model Object
List panel.

The Edit File Details panel displays.

Zoom into the access path.

Type Z on the selected QRY (or SQL) access path and press Enter.
The Edit Access Path Details panel displays.

View the auxiliaries.

Press F7.

The Edit Access Path Auxiliaries panel displays.

Note: In order to get the F7 option for auxiliaries, you must zoom into the access path
by typing Z next to the access path.

1.

Edit the auxiliaries.

Change any of the following details as appropriate:
m Source Member Name

m Source Member Text

m Index Name for SQL only. Enter *NONE to suppress generation of the SQL
index.

Generate the access path.

For the new specifications to take effect, you need to regenerate the access path.

For more information about how to generate the access path, see the instructions in the
chapter "Generating and Compiling."

Chapter 4: Modifying Access Paths 97

Chapter 5: Deleting Access Paths

This chapter contains instructions on how to delete access paths from your application.
You may want to delete access paths created in error or those no longer needed.

This section contains the following topics:

Deleting an Access Path (see page 99)

Determining the Usage of an Access Path (see page 100)

Deleting an Access Path

Access paths can be deleted only if they are not referenced by any other function or
access path. A cross-reference panel, Display Access Path Reference, is available to show

you where a given access path is used.

To delete an access path

1.

Zoom into the file. At the Edit Database Relations panel, type Z next to any relation
for the selected file and press Enter. Alternatively, you can use selection option 2

from the Edit Model Object List panel.

The Edit File Details panel displays with a list of the access paths for the file.

Delete the access path. Type D next to the access path you want to delete and

press Enter.

The Delete Access Path panel displays:

DELETE ACCESS PATH SYHDL

! Custamer
: Customers by name

File name
ficcess path

Source member. i UUADREL2
Source member text . . : Customer
Delete object from library : BYGEN
Delete source from library : SYGEN
Format GEN Format text
Seq name pfx (Based on file)
1 FADREAP AD Customer

F3=Exit, no update ENTER=Validate

Attribute.
Type . . .

: REF
: RSO

Customers by name

Name, *MDLPRF, #*GENLIB, #NONE
Name, *MDLPRF, *GENLIB, #*NONE

Associated
Retrieval access path
Retrieval index

Chapter 5: Deleting Access Paths 99

Determining the Usage of an Access Path

3. Validate your actions. Press Enter to validate the deletion.

An additional confirmation prompt displays before the access path is deleted. This
prompt allows you to specify that the source and object are to be deleted.

CA 2E does not allow you to delete the access path if it is referenced by any other
function or access path.

You must eliminate the references before you can delete the access path. You can
do so by determining the usage of an access path.

4. Confirm the deletion. At prompt, press Enter to confirm the deletion.

Determining the Usage of an Access Path

1. View the access path usages. Type U next to the selected access path on the Edit
File Details panel and press Enter.

The Display Model Usages panel displays with a list of functions and other access
paths that reference the selected access path.

2. View the functions that use the access path. Type F next to the selected access
path on the Edit File Details panel and press Enter.

The Display Model Usages panel appears with a list of the functions that reference
the access path. A function built over an access path is an example of a function
using an access path.

For more information on usages, see the Impact Analysis section in the "Managing
Model Objects" chapter of Generating and Implementing Applications, and the
Advantage 2E Command Reference, YDSPMDLUSG command.

100 Building Access Paths

Chapter 6: Defining Arrays

This chapter contains procedures for defining, editing, renaming, and deleting an array.
An array is a structure that stores sets of data within a function. The contents of an
array are available only as long as the function is active. The structure has a defined
layout and each entry (element) of the structure has the same layout. Define this layout
with any set of fields from the model, such as attribute, code, and function fields.

Use arrays to:

m Improve performance where a function requires repeated access and use of a finite
number of entries, such as table lookups.

m Move between a field and a data structure.

m Sequence a finite set of data by a set of unrelated key fields.
Programmers (*PGMR) and designers (*DSNR) can define arrays.

This section contains the following topics:

Understanding Arrays (see page 102)

Structuring Field Data Using Arrays (see page 102)
Passing Parameters (see page 103)

Defining an Array (see page 104)

Editing an Array (see page 107)

Deleting an Array (see page 108)

Chapter 6: Defining Arrays 101

Understanding Arrays

Understanding Arrays

The array has a defined layout and each entry (element) of the structure has the same
layout. Define this layout with any set of fields from the model, such as attribute, code,
and function fields. The array must have a defined key that acts as an index into the
array. The key is any subset of the fields in the array structure, up to a maximum
composite key length of 990. Each key field in the composite key list acts as a different
dimension to the array. The composite key is defined as being either unique or
non-unique.

CA 2E does not guarantee the sequence of equally keyed elements in a non-unique
array. The key also is defined as ascending or descending. This definition applies to the
complete composite key. When determining the key sequence, CA 2E ignores the signs
of any numerical fields in the key of the array.

Arrays can be used only by the *CVTVAR built-in function and the following four
standard data function types:

m Create Object (CRTOBJ) to add an element

m Change Object (CHGOBIJ) to change an element

m Delete Object (DLTOBIJ) to delete an element

m Retrieve Object (RTVOBJ) to read an element or set of elements

For more information about how to use or clear the data from an array, refer to the

Array Processing section in the "Defining Functions" chapter of the Building
Applications.

Structuring Field Data Using Arrays

Since a single-element array is equivalent to a data structure, you can use the *CVTVAR
built-in function and the ELM context to apply a data structure to a field. This gives you
a simple way to decompose a field into a structure and to (re)compose a set of fields
into a single field in a single operation.

Structure files (STR) provide a similar capability, but you need to be a designer (*DSNR)
to define a structure file. Both *DSNR and *PGMR can define arrays.

For more information on structuring field data and examples, see the sections
Understanding Built-In Functions (*CVTVAR), and Understanding Contexts (ELM) in the
chapter "Modifying Action Diagrams," in Building Applications.

102 Building Access Paths

Passing Parameters

Passing Parameters

You can also use arrays to define a set of fields that are then used as a parameter entry
to any function. This process allows you to define a large number of parameters of any
field type to a function without creating a structure file (a *DSNR function).

Storing Data Between Calls

For programs that do not close down, arrays are initialized on the first call to the
program. Subsequent calls do not clear the array. The first call loads the array and
subsequent calls retrieve that data. In addition, you can define an array to store and
restore any fields in the program between calls. The PGM context variable Initial Call can
be used to distinguish between first and subsequent calls. This variable is always set to
*YES if the program closes down.

For more information on defining arrays, see Building Applications.

Chapter 6: Defining Arrays 103

Defining an Array

Defining an Array

This topic tells you how to create and fully define an array. This process includes
selecting the fields for the array and defining the relative order of the fields by assigning
sequential numbers to key fields.

1. View the list of files. At the Edit Database Relations panel, type *a or *ARRAYS in
the positioner field at the top of the panel and press Enter.

The list of the CA 2E reserved files displays.
2. Zoom into the array file. Type Z next to the *Arrays file and press Enter.
The Edit Array panel displays.

3. Define the array. Type the name of the new array under the Arrays heading in the
first blank line and press Enter.

The name must be a unique array name. This field becomes an output-only field.
The default line data for the new array displays, including the following information:

m Sequence—Sequence of the key or composite key of the array in either
ascending or descending order. The default for this field is ASCEND.

m Unique—Defines if the keys in the array must be unique or non-unique. Unique
is the default.

m Elements—Defines the maximum number (9999) of elements that this array
can hold. An element is a full array entry and not a field within that entry. The
default is 100.

The following array sample could be used to accumulate Order Totals for each
State/Branch combination:

104 Building Access Paths

Defining an Array

Customer

Order Header

Order Value by State/Branch

Customer no.
Customer name
State code

Order no.
Customer no.
Branch no.
Order value

File (1) Access Path (1) |Fields (2) Key (3)

Customer Retrieval Index State code 1

Order Retrieval Index Branch no. 2
Order value

(1) This definition comes form the Edit Array Details panel
(2) This definition comes form the Edit Array Entries panel
(3) This definition comes form the Edit Array Key Entries panel

Chapter 6: Defining Arrays 105

Defining an Array

Selecting Field and Key Details for Your Array

1.

Zoom into the array. Type Z next to the selected array and press Enter.

The Edit Array Details panel displays. This panel is where you specify the files and
fields that are used to define the layout of the array entry.

Specify the layout. Specify the file or field that defines this part of the array entry
layout.

Define source. Define the source of the field definitions. This source may specify file
or *field.

Specify the field. If the source of the field is *FIELD, specify the actual field in the
next column (or select by entering ?).

Specify the access path. If the source of the field is a file, specify the access path of
the file (or *NONE for all fields for the file) in the second column.

a. Type Z next to the line and press Enter to select the required fields from the
access path.

The Edit Array Entries panel displays with a list of fields for the selected access
path or file.

b. Type + (plus) next to the fields you want to add to the array and press Enter.

c. Type—(minus) next to selected fields you want to drop from the array and
press Enter.

Exit. Press F3 to exit panel.

The Edit Array Details panel redisplays with a list of selected fields.
Select keys. Press F7 to select the keys for an array.

The Edit Array Key Entries panel displays.

Note that you must define a key for an array even if the array holds a single
element.

Select the key order for the fields. Type a number in the Key no. column that
defines the relative order of the field in the composite key list. The lowest value (1)
is the major key or first dimension of an array.

You have created and defined your array.

Note: 2E does not support numeric keys that can have negative values.

106 Building Access Paths

Editing an Array

Editing an Array

To edit an array, use the steps in the preceding Defining An Array topic to determine
where to make the following types of changes to your array.

Array Details:
® Sequence status
m Unique key status

m Elements

Fields Definitions:
m Selected files
m Selected access paths

m Selected fields

Key Order:

m Key and composite key

Type — (minus) next to any selected + (plus) field you want to remove from the array on
the Display All Fields panel.

In addition, use the following instructions to examine array usage and change the array
name.

Viewing Function References
At the Edit Array panel, type F next to the selected array to examine the usage.

The Display Model Usages panel displays the functions that use the selected array.

Chapter 6: Defining Arrays 107

Deleting an Array

Changing the Name of an Array

Follow these steps to change the name of an array.

1.

View the list of files. At the Edit Database Relations panel, type *a or *ARRAY in
the positioner field on the top line of the panel and press Enter.

The list of reserved files displays.

Zoom into the array file. Type v next to the Arrays file.

The Edit Arrays panel displays with a list of the arrays in your model.
Zoom into the array. Type Z next to the array you want to rename.

The Edit Array Details panel displays with the name of the array and the array
details.

Change output field to input field. Press F8.
The output-only field, Array Name, is changed to an input-capable field.

Rename the array. Type the new name of the array and press Enter to accept the
change.

The panel redisplays with the new array name.

Note: The array name must be unique; CA 2E does not accept duplicate names.

Deleting an Array

The CA 2E Delete Array feature allows you to delete an existing array.

1.

View the list of files. At the Edit Database Relations panel, type *a or *ARRAY in
the positioner field on the top line of the panel and press Enter.

The list of the reserved files displays.

Zoom into the array file. Type Z next to the Arrays file.

The Edit Arrays panel displays with a list of the arrays in your model.

Delete the array. Type D next to the array you want to delete and press Enter.

A Delete Array window displays at the top of the panel that confirms the delete
array request.

Note: You cannot delete an array if it is used by any function.

For more information on how to determine array usage, see the Editing an Array and
Viewing Function References sections in this chapter.

108 Building Access Paths

Chapter 7: Generating and Compiling

This chapter contains information on the results of generating a specific type of access
path, depending on the generation mode you selected, and provides instructions on
how to generate and compile an access path.

You must first generate the HLL source code needed to implement access paths you
created. Instructions for this are provided earlier in this module. After you generate the
access paths, you compile the source to produce executable i OS objects, files, and
tables.

This section contains the following topics:

Implementing (see page 109)

Implementing

An access path closely corresponds to the i OS use of the term. You can specify an
access path to various generation modes, including values such as DDS, SQL or DDL. DDS
generates physical and logical file and, SQL or DDL generate indexes and table.

You must first generate the source members for the database files to implement the
access paths. The generated source needs to be compiled. You can generate source
either interactively or in batch.

i OS Index Versus CA 2E Index

The type of index generated is determined by the source you select in the model value.
CA 2E access paths are generated as i OS objects. i OS access paths are generated as
indexes and views.

Setting Your Options

You can specify various implementation options for each access path such as the i OS
object name used for the logical file and whether the access path maintenance is
Rebuild, Delay or Immediate. CA 2E provides defaults for these options.

Chapter 7: Generating and Compiling 109

Implementing

Chandging Compiler Overrides from DDS to SQL or DDL

If you change your model from DDS to SQL or DDL, verify that the *MESSAGE shipped
file contains the CA 2E shipped compiler options. Any DDS overrides in effect during
generation for an SQL or DDL implementation, will cause the compile to fail.

Identifying the Implementation Attributes

The following table shows the i OS implementation attributes for each of the access

paths:

Access Path (1) (2) (3) (4) (5) sQL DDS DDL
Type Unique Access Alt Selecti Implement Implement Implement
orDup Path Col on ation ation ation
Key Maint (DDS
Sequen enanc only)
ce (DDS e
only)
PHY Physical Genera - - - Table Physical Table
ting File
o and . . .
UPD Update e | - - View and Logical File Index
Compili
(default) Index
- ng
UPD Update I/D/R - - View and Logical File Index
Index
RTV Retrieval - S,D View and Logical File Index
(default) Index
RTV Retrieval I/D/R - S,D View and Logical File Index
Index
RSQ I,D,R Yes S,D View and Logical File Index
Resequence Index
QRY Query I/D/R - D View and Physical -
(6) Index File
SPN Span I,D,R Yes S,D Two CL -
Indexes Program
and two Logical File
Views

110 Building Access Paths

Implementing

The following legend applies for the access path types:

(1) Unique key status (DDS unique keyword or SQL unique keyword with create index
statement). U indicates unique; if not unique, see Note (2). The default UPD and RTV
access paths must be unique.

(2) Duplicate key sequence for DDS only (L=LIFO, F=FIFO," '=undefined, C=FCFO).

(3) i OS access path maintenance (I=*IMMED,R=*REBLD, D=*DLY). For QRY access paths,
see item (6).

(4) Alternative collating sequence table for DDS only (DDS ALTCOL keyword).
(5) Selection type (S=static, D=dynamic) (DDS DYNSLT keyword).

(6) Causes the i OS OPNQRYF command to be called with the OPTIMIZE option equal to
*FIRSTIO, *MINWAIT, or *ALLIO, respectively.

For SQL, static selection is implemented through SQL Data Definition Language (DDL)
statements. Dynamic selection is implemented by Data Manipulation Language (DML)
statements.

Note: If an SQL-generated RSQ access path has select/omit criteria and is defined as
Unique with Static maintenance, the key defined as unique must be unique over the
entire file and not just with a subset of that file (as defined by the select/omit criteria).

The current implementation of the DDL generation mode is not valid for SPN access
path, QRY access path, access paths that have virtual fields, and multi-member files.

In addition, the following table shows which of the SPN access path / QRY access path /
access paths that have virtual fields / multi-member files are valid for SQL
implementation.

YDBFGEN / SPN QRY Access Path Access Path Multi-Member
YDBFACC Access with Virtual s
Path Fields
YDBFGEN =*SQL Y Y Y N
YDBFACC =
*DBFGEN
YDBFGEN =*SQL Y Y (Source does not Y N
YDBFACC = contain SQL
*TABLE statements. Function

based on access table)

Chapter 7: Generating and Compiling 111

Implementing

Generating an Access Path

You must generate and compile the source members for your access paths before you
can run your application. The following steps provide you with instructions to generate
your access path.

1. Go to the Services Menu. At the Edit Database Relations panel, press F17.
The Display Services Menu appears.
2. Select access paths. Type 8 at the bottom of the screen and press Enter.

The Display All Access Paths panel appears with a list of all of the access paths in
your model.

3. Generate the access path. Type J next to each of the access paths you want to
generate and press Enter.

The Display All Access Paths panel reappears with messages at the bottom of the
panel that say the source generation requests have been accepted.

Note: Selecting either J for batch generation or G for interactive generation
generates your access paths. However, selecting G has an impact on system
performance. Generating interactively negatively impacts other interactive users.

4. Press F3 to return to the Services Menu panel.

Note: An alternative to this procedure is to use option 14 (generate in batch) or 15
(generate interactively) from the Edit Model Object List panel.

Limitation:

When you take the G / J option to generate the access paths from the Display All Access
Paths panel or take the G / J option to generate the access paths from the Edit File
Details panel or take option 14 / 15 from the Edit Model Object List panel against a
*DDL-based access path and the access path has either of the four DDL limitations, the
generation is prevented. The access path source is not generated and no entry is added
to the job list.

m The current implementation of the DDL generation mode is not valid for the
following cases:

m Access paths that have virtual fields
m SPN access path

m QRY access path

m Multi-member files

Workaround for Virtual Fields, SPN, and QRY Access Paths: If the earlier
generation mode is *DDS, revert to it and regenerate the access path. You need not
regenerate the functions that use this access path. If you want to have an SQL type
database, regenerate the access path using *SQL generation mode. The functions
using this access path must be regenerated.

112 Building Access Paths

Implementing

Workaround for Multi-Member Files: If you want to have more than one member
for the access paths, revert to *DDS generation mode.

Note: If you want to change an access path, which is previously defined as *DDS with a
MAXMBR compiler override, to *DDL, you must revert to *DDS generation mode and
must remove the compiler override, and then change back to *DDL generation mode.

For more information:

®m On the Edit Model Object List panel, see the Editing Model Object Lists section in
the "Managing Model Objects" chapter of Generating and Implementing
Applications.

m On the following topics, see Generating and Implementing Applications:
- Generating Request Panels/Displays
- Generating Access Paths
- Changing Generation Mode
- Verifying Results
— Checking Code Generation Errors

- Identifying Common Errors

Chapter 7: Generating and Compiling 113

Chapter 8: Documenting Access Paths

This chapter contains procedures on how to document your access paths. CA 2E
includes a number of commands to produce hard copy documentation of your design
model. For access paths, this documentation identifies the access paths in your model
and provides a complete list of their details. This documentation consists of CA 2E
functional text. Functional text is entered by the designer to describe the purpose of the
design object and any restrictions and notes on the reason for design decisions.

This section contains the following topics:

Documenting an Access Path (see page 115)

Documenting an Access Path

There are two types of narrative text allowed for each object entry: functional text, used
to describe the purpose of the design object; and operational text, used to describe the
function of an object to an end user. If no operational text is available, functional text is
used in the generated help panels.

All the documentation commands have a PRTTEXT parameter that allows you to specify
whether you want text to be included in the listing and, if so, which type of text.

A maximum of ten pages of text of each type can be associated with each CA 2E object
to explain the purpose of the object within the design.

Chapter 8: Documenting Access Paths 115

Documenting an Access Path

Creating the Documentation

Use the following method to document an access path:
1. Go to the Display Services Menu. At the Edit Database Relations panel, press F17.
The Display Services Menu panel displays.

2. Display Documentation Menu. From the Model Documentation options on the
Display Services Menu panel, select the option and press Enter.

The Display Documentation Menu panel displays.
3. Select access paths. Select the option to document the access paths.
The Document Model Access Paths (YDOCMDLACP) panel displays.

4. Select type of documentation. Choose the documentation option you want from
the following list of choices.

m Model files

m Application area code

m Print text

m Print access path details
m Access path type

m Begin new page

CA 2E creates a print file that contains your documentation.

116 Building Access Paths

Chapter 9: Tailoring for Performance

When building access paths within your model, you should pay attention to certain
aspects of system design that will enable you to obtain the best system performance.
Some issues regarding access paths could affect the performance of your application.
This chapter explains the issues for i OS logical files and relates them to the default
values for access paths. Depending on your design, you might want to consider the
following topics.

m Considering the Types of Data in the Physical File

® Minimizing the Number of Active Indexes

m Maintaining Access Paths (Immediate, Delay, Rebuild)

m Using Select/Omit Criteria

m Using Virtual Fields (Join Logical Files)

®m Multi-format Access Paths

m Using Open Data Paths

m Creating Default Retrieval Access Paths

For more information about system performance considerations, refer to CA
Xtras Performance Expert User Guide and IBM i Database Guide.
This section contains the following topics:

Considering the Types of Data in the Physical File (see page 118)
Minimizing the Number of Active Indexes (see page 118)

Access Path Maintenance (Immediate, Delay, or Rebuild) (see page 121)
Using Select/Omit Maintenance (see page 124)

Using Join Logicals (see page 125)

Using Multi-Format Access Paths (see page 126)

Using Open Data Paths (see page 126)

Creating Default Retrieval Access Paths (see page 127)

Chapter 9: Tailoring for Performance 117

Considering the Types of Data in the Physical File

Considering the Types of Data in the Physical File

An access path is a view of the data in a physical file, in a given key sequence. In terms
of performance, some of the overhead of access paths has to do with the amount of
work that the operating system (i OS) does to maintain those views. Each time a record
is added, deleted, or changed in the physical file, or when the data in the key of a record
changes, the operating system may have to update each CA 2E access path belonging to
the PHY file. Consequently, the more access paths you build, the more work the
operating system may have to do for each record change.

For example, with non-volatile data files (master or table files of relatively unchanging
data), the number of access paths built over them is not as important as it is for the
number of logical files built over volatile files (transaction files of constantly changing
data) because their access paths must be constantly updated. This implies that master
files should not contain a mix of master and volatile data. For example, balance-related
information (volatile) should not be held in an Item Master file (non-volatile).

For more information on the data modeling and normalization process, see the
"Developing a Conceptual Model" chapter in Defining a Data Model.

You can show the difference between the non-volatile and volatile data files using REF
and CPT file types respectively. The only difference between the REF and CPT file types
is the automatic creation of an edit file and select record function for REF files.

Minimizing the Number of Active Indexes

An access path is defined with key fields specified in a given order and/or with dynamic
or static selection maintenance specified. Together the keys and selection maintenance
specify which records on a file are implemented as a logical file. However, the operating
system implements logical files by automatically creating what is called an active index.
The active index is part of the operating system's implementation of logical files. There
is a separate active index for each set of key and static selection maintenance.

Where possible, the operating system tries to share an active index between logical
files. If logical files have the same key fields and static selection maintenance, they may
share an active index. If two similar logical files (same keys) have dynamic select/omit
maintenance, they may be able to share the same active index. However, if one (or
both) has different static select/omit maintenance, they cannot share an active index,
and the operating system always creates separate active indexes.

118 Building Access Paths

Minimizing the Number of Active Indexes

The Active Index

The following example shows separate active indexes:

Access Path 1

Keys ABC]
Access Path 2 INDEX 1 Physical
Keys AB Key ABC File
Access Path 3
Keys A —
Access Path 4 INDEX 2
Keys B Key B

It is important to minimize the number of active indexes because active indexes cause
extra system overhead. Active indexes sharing multiple access paths in the design model
do not always equate to multiple indexes. For example, the UPD and RTV access paths
have the same active indexes.

Sharing Active Indexes

The following example shows a shared active index.

Example:
LGL 1 LGL 2 LGL2
PHY Key A Key A Key A
Key B Key B
Key C

Compilation Sequence:

LGL1,LGL2Z,LGL3 1 Active Index
LGL3,LGL2,LGL1 3 ; "

Chapter 9: Tailoring for Performance 119

Minimizing the Number of Active Indexes

The compilation sequence can affect the number of active indexes required.

In the previous example, if the compilation sequence is LGL1, LGL2, LGL3, one active
index is created. Since the key sequence for LGL2 and LGL3 are subsets of LGL1, they can
share the same active index.

If the compilation sequence is LGL3, LGL2, LGL1, three active indexes are created
because the key sequence for LGL2 and LGL1 are not subsets of LGL3.

120 Building Access Paths

Access Path Maintenance (Immediate, Delay, or Rebuild)

Access Path Maintenance (Immediate, Delay, or Rebuild)

There are three types of access path maintenance options: immediate (IMMED), delay
(DLY), and rebuild (REBLD). These options determine how the operating system applies
changes to the access paths. While a file is open, the system maintains the access paths
as changes are made to the data in the file. However, when the file is closed, the access
path maintenance option specifies to i OS how the access path should be maintained. It
is important to pay close attention to access paths in the design stage.

m |IMMED maintenance means that the active index is maintained as changes are
made to its associated data regardless of whether the file is open.

m DLY maintenance means that any maintenance for the active index is done after the
file member is opened and while it remains open. Updates to the access path are
collected from the time the access path is closed until it is opened again. When it is
opened, only the collected changes are merged into the access path.

m REBLD maintenance means that the active index is maintained only when the file is
open, not when the file is closed; the access path is rebuilt the next time the file is
opened. When the file is opened again, the access path is totally rebuilt. If one or
more programs has opened a specific file member with rebuild maintenance
specified, the system maintains the access path for that member until the last user
closes the file member.

The use of maintenance options applies only to RSQ and SPN access paths. The UPD and
RTV access paths are defined with a UNIQUE key; as a result, maintenance has to be
IMMED. For QRY access paths, maintenance does not apply because the access path is
rebuilt at execution.

There are considerations with each type of maintenance option. When you change a
file, indexes with IMMED maintenance are updated. However, when programs that
open DLY and REBLD maintenance access paths are invoked, changes are applied that
then make the programs slower to load.

Use DLY maintenance with caution. If more than approximately 10% of the number of
entries in the access path are changed, the whole index will be rebuilt at the next open.
This rebuild could occur during the use of a program that does not use that index.

If the file records are non-volatile, you can always take the default IMMED maintenance.
If the data is likely to change for infrequently used access paths, you may use DLY or
REBLD maintenance. However, keep in mind that for each different type of
maintenance, you will get a separate active index. Specify a REBLD access path if you
already have an IMMED maintenance access path with the same set of keys and
select/omit sets.

The following is a comparison of IMMED, DLY, and REBLD maintenance as they affect
opening and processing files:

Chapter 9: Tailoring for Performance 121

Access Path Maintenance (Immediate, Delay, or Rebuild)

Immediate

Delay

Rebuild

Fast open because the
access path is current.

Moderately fast open
because the access path
does not have to be rebuilt,
but it must still be changed.
Slow open if extensive
changes are needed.

Slow open because access
path must be rebuilt.

Slower update/output
operations when many
access paths with
immediate maintenance
are built over changing
data (the system must
maintain the access
paths).

Moderately fast
update/output operations
when many access paths
with delayed maintenance
are built over changing data
and are not open (the
system records the
changes, but the access
path itself is not
maintained).

Faster update/output
operations when many
access paths with rebuild
maintenance are built over
changing data and are not
open (the system does not
have to maintain the access
paths).

For more information:

m On the access path maintenance options, see Editing Access Path Details in the
Modifying Access Paths" chapter and Identifying the Implementation Attributes in
the "Generating and Compiling" chapter.

m On the effect of the access path maintenance options on performance, see IBM i

Database Guide.

Maintenance for Query (QRY) Access Paths

For Query (QRY) access paths, the access path maintenance option is approximated
using the OPTIMIZE parameter on the i OS Open Query File OPNQRYF command. The
OPTIMIZE parameter indicates the optimization goal the system is to use when
satisfying the QRY access path specifications.

The following table gives a brief description of each OPTIMIZE parameter value and
shows the corresponding access path maintenance option:

OPNQRYF Command OPTIMIZE Parameter
Values (for QRY Access Paths)

Corresponding Access Path
Maintenance Option

*FIRSTIO The system attempts to *IMMED
improve the time required to

open the file and to retrieve

the first buffer of records from

the file.

122 Building Access Paths

Access Path Maintenance (Immediate, Delay, or Rebuild)

*MINWAIT The system attempts to *DLY

minimize delays when reading
records from the file.

*ALLIO The system attempts to *REBLD

improve the total time to
process the whole query,
assuming that all query
records are read from the file.

For more information:

On QRY access paths, see Recognizing the Basic Properties of Access Paths in the
"Access Paths: An Introduction" chapter and Adding a Query (QRY) Access Path in
the "Adding Access Paths" chapter.

On the OPNQRYF command's OPTIMIZE parameter, see IBM i Control Language
Reference.

Chapter 9: Tailoring for Performance 123

Using Select/Omit Maintenance

Using Select/Omit Maintenance

Select/omit maintenance filters records that match the specified selection or omission
maintenance. The two types of select/omit maintenance are: static and dynamic.

If the select/omit maintenance is dynamic, all records, regardless of the select/omit set,
are included in the access path. The system filters the records as the program reads
them. The program returns only the records that match the select/omit maintenance.

If the select/omit criteria is static, only those records that satisfy the select/omit
maintenance are included in the access path. As each record is added or changed, the
system determines if it should be included in the access path. As the data is read, no
filtering is required since the access path maintenance has performed the filtering.

Note: In the DDL generation mode, irrespective of the select/omit criteria setting being
static or dynamic, only those records that satisfy the select/omit criteria are included in
the access path.

For more information about the relation between static/dynamic maintenance and the
generation modes, refer to Select/Omit in DDL Index (see page 89).

Because of this difference, any access path with static select/omit criteria usually has a
separate internal active index, whereas any access path with dynamic select/omit
maintenance can share an active index with other similarly keyed access paths even if
the select/omit criteria differ. The provision and use of dynamic select/omits increases
the possibilities of sharing active indexes.

Note: For join logical files in CA 2E (files with virtual fields) with select/omit criteria, the
static select/omit maintenance cannot be used. Use the dynamic select/omit
maintenance.

The type of data file is again important. For non-volatile (master or table) data files the
logical files should, if possible, have static select/omit criteria. The static select/omit
maintenance requires an extra active index to be maintained. But the frequency of
change to the data is low and therefore maintenance does not occur often. For volatile
(transaction) data files, the type of select/omit criteria depends on the actual number of
records being read and the frequency of use of the active index.

If the active index is used infrequently or in batch, the overhead of having dynamic
select/omit criteria may might be acceptable.

124 Building Access Paths

Using Join Logicals

Using Join Logicals

A join logical file is a logical view of the physical files upon which it is based. It also
enables data from another physical file or a related (or joined-to) physical file to be
read. The join is performed when the records in the based-on physical are read. One or
more fields in the based-on physical are matched with fields in each joined-to physical
and data from each matched record is read. The join logical is composed of only one
record format, which contains fields from the based-on file and the joined-to physical
files. The join fields are read-only capable and cannot be updated through the join
logical.

An access path generates and compiles as a join logical if there are virtual field entries
on the access path format entries. The physical file that contains the virtual fields is
joined to the primary files using the keys of the file-to-file relations to provide the
match. These relations can be Owned by, Refers to, or Extended by.

The operating system does the work. The join (matching records through common
fields) is implemented using a machine interface (I/0) routine to read from the joined-to
physical files. You can define join logicals that join through several physical files. The
maximum number of physical files allowed in a join file definition (direct joins or
chained joins) is 32. A field that is brought across more than six (or as few as three or
four) chained joins actually loses the performance benefit because it requires many 1/0
routines to obtain the data. Consequently, obtaining data across several joins is not
recommended.

The use of join logicals is efficient only when the data that is being read is actually
needed. If the data is not required, the operating system is doing unnecessary |/0O to
other files. In terms of internal active indexes, the join logical shares the active indexes
of the based-on file just as with access path types.

Maintenance can be specified as IMMED, DLY, or REBLD. Only dynamic select/omit
maintenance can be specified on CA 2E join logical files. In terms of performance, this
has some significant consequences:

m Where it may be better to have static select/omit maintenance, you can drop the
virtual field so that it can be specified. The additional data can be retrieved using
your own reads to the secondary file.

m The operating system reads the joined-to data before applying the selection
because the selection itself could be on a joined-to virtual field. This compounds the
performance problem particularly where there is /0 to several different physical
files.

Chapter 9: Tailoring for Performance 125

Using Multi-Format Access Paths

Using Multi-Format Access Paths

Multi-format access paths are access paths with more than one record format. They are
based on more than one physical file and can read/write to several physical files.

The multi-format can be treated as though each format were a separate access path.
The use of the physical files for each format should collectively determine the type of
maintenance for the access path. A select/omit maintenance can be applied to each
format that is best suited for the physical file, the effect on performance (hit-rate), and
the number of records being read. In terms of active indexes, each multi-format access
path can share an active index. However, in practice, this is unlikely. Therefore, treat
each multi-format access path as if it creates an extra active index over each of the
physical files. CA 2E supports the multi-format logicals for the SPN access path.

Using Open Data Paths

An open data path (ODP) is the path through which all input/output (I/0) operations for
the file are performed. ODPs can be shared by more than one program in the same job
but not between jobs.

The object is to be able to share ODPs and still have the applications work as before.
Sharing the ODP reduces the amount of main memory the job needs and reduces the
amount of time it takes to open and close the file.

The amount of work the operating system does can be reduced by sharing the ODP
among all the programs in the jobs that use it. When a file is used more than once in the
same job, it can be shared. Sharing an ODP should be done with care. With each access
path the position of the current record (the file cursor) is held only once on the ODP. It
is possible that one program accessing a file with a shared ODP can change the position
in the file inadvertently, causing unpredictable results in other programs in the job.

Sharing an ODP is not defined as a default for access paths. You must specify share ODP
on the compiler override for a given access path.

126 Building Access Paths

Creating Default Retrieval Access Paths

Creating Default Retrieval Access Paths

To improve the performance of your application, try dropping all of the virtual fields
from the default RTV access path. You can use this standard with every file you
implement in CA 2E that contains virtuals.

The idea is to create an access path that can be used for validation and that does not
have any virtual fields. To do this use the following steps:

1. Zoom into the file. At the Edit Database Relations panel, type Z next to any relation
for the selected file and press Enter. Alternatively, you can select option 2 from the
Edit Model Object List panel.

The Edit File Details panel displays.

2. Rename the default retrieval. Rename the default RTV access path for your file to
the name Validation View.

3. Create a new RTV access path if you require one that contains virtuals.
4. Rename. Name the new RTV access path Retrieval Index.

5. Use the new RTV. Base any functions for the file over the new RTV access path that
requires those virtual fields.

6. Create the validation view with a compiler override of SHARE (*YES).

For more information on compiler overrides, see the "Generating and Compiling Your
Application" chapter in Generating and Implementing Applications.

CA 2E uses the default RTV Index Validation View for all file validations. This view also
uses the index to determine which fields in the file can be virtualized. The fields
available for virtualization will default to only those fields present in the file itself.
Although it is not generally a good performance technique, you can virtualize fields that
are themselves virtualized. You can do this by adjusting the referenced access path of
the relation to point to an untrimmed access path using the Edit Access Path Relations
panel.

Chapter 9: Tailoring for Performance 127

Index

*

*ARRAYS « 104
*DSNR User type ¢ 103

A

access path » 17, 18, 19, 20, 21, 22, 23, 24, 53, 55,

56,57, 58, 61, 62, 64, 67,69, 70,71, 72,75, 77,
79, 81, 82, 84, 86, 91, 94, 97, 99, 100, 110, 112,
115, 116,117, 121, 122,126, 127
adding 53

auxiliaries ¢ 24, 94, 97
characteristics » 22

default retrieval » 117, 127
deleting » 99

details » 23

documenting » 115, 116

editing » 67, 69

entry e 77

format ¢ 77

format entries ® 75, 77

format keys ¢ 75

format text e 75

generating e 112

holding ¢ 62, 81

maintenance ¢ 69, 70, 71, 121
modifying 61

multi-format » 117, 126

naming ¢ 23

performance ¢ 117

physical (PHY) e 18, 55, 56
query (QRY) 21, 55, 57, 67, 71, 94, 110, 122
referenced ¢ 91

relations 79, 84

required relations 79
resequence (RSQ) ¢ 20, 55, 56
retrieval (RTV) ¢ 19, 55

span (SPN) e 22, 55, 58

tailoring 86

trimming ¢ 64

types e 17,72

update (UPD) ¢ 18, 55

usages ¢ 100

virtual field » 64, 82

action diagram ¢ 34

compute condition symbols (YACTCND) e 34
compute expression symbols (YACTFUN) e 34
structure symbols (YACTSYM) ¢ 34
active indices » 117, 118, 119
minimizing number ¢ 118
sharing » 119
adding * 56, 57, 58, 91
access paths ¢ 56
based-on access paths ¢ 91
query access paths ¢ 57
resequence access paths ¢ 56
span access paths ¢ 58
allocating names ¢ 25, 28
alternate collating sequence * 69, 72
alternating collating table ¢ 72
ANDed » 87
array 101, 102, 103, 104, 107, 108
*CVTVAR function ¢ 102
as data structure ¢ 102
changing names ¢ 108
Closedown Programs ¢ 103
COBOL arrays ¢ 103
deleting » 108
details » 107
editing » 107
ELM context field e 102
field definitions e 107
field details » 104
key details 104
key order ¢ 107
sample ¢ 104
assimilated files ¢ 77
assimilated physical files o 77
associated access path 91
auxiliaries ¢ 24

B

based-on access path ¢ 91

basic properties » 17

Bi-directional support ¢ 48
help text » 48

built-in functions 102
convert variable e 102

Index 129

C

changing * 76, 91, 108
array name « 108
key sequence ® 76
referenced access path « 91
CHGOBJ » 102
CL program e 57
COBOL arrays ¢ 103
command key defaults ¢ 51
comments ¢ 39
supressing in source code ¢ 39
compilation ¢ 109
overview ¢ 109
compiler overrides ¢ 32, 110
changing « 32
components e 23
condition values ¢ 36
CUA prompt (YCUAPMT) ¢ 36

confirm prompt value (YCNFVAL) ¢ 35

context ¢ 102
ELM (array element) ¢ 102

Copy Model Objects (YCPYMDLOBJ) » 74

SQL access path 74
Create Logical File ® 32
Create Object » 102
Create Physical File » 32
Create Table » 72
CRTLF ¢ 32
CRTOBJ ¢ 102
CRTPF i OS command e 32
CRTTBL ¢ 72
CUA prompt ¢ 36

D

data area ¢ 65
data definition language ¢ 73
database file generation ¢ 30
database implementation ¢ 37
date « 37
cutoff (YCUTOFF) e 37
format (YDATFMT) e 37
validation (YDATGEN) e 37

DDS e 25, 30, 57, 67, 73, 74, 94, 109, 110

*Unique keyword ¢ 67
implementation attributes ® 110
joins e 74

default ¢ 25, 33, 38, 51, 53, 117, 127
access paths ¢ 53

environment (YEXCENV) ¢ 38
function keys ¢ 51
model values ¢ 25, 33
options ¢ 25
retrieval access paths ¢ 117, 127
defining » 101
array ¢ 101
delay » 121
DLY ¢ 121
delay maintenance ¢ 67
delete » 99, 108
access path » 99
array ¢ 108
confirmation ¢ 99

designer user type (*DSNR) ¢ 101, 102, 103

arrays ¢ 101, 102
device design * 36, 40, 42, 44, 63
external MSGIDs (YPMTGEN) e 42
leaders (YLSHFLL) » 40
panel layout (YSAAFMT) e 44
right-hand text (YCUAEXT) » 36
Display Documentation Menu ¢ 116
Display Services Menu ¢ 112, 116
displaying references ¢ 65
distributed flag * 66
DLTOBJ « 102
DLY ¢ 121
documentation ¢ 115, 116
access paths ¢ 116
functional text ¢ 115
operational text e 115
type ¢ 116

Documentation Model Access Paths panel ¢ 116

DRDA ¢ 39, 66
default RDB (YGENRDB) ¢ 39
distributed flag » 66

duplicate sequence ¢ 70
options e 70

dynamic selection ¢ 124

E

Edit File Details panel » 54
Edit Function Options panel » 49
editing ¢ 69, 77, 97, 107
access path auxiliaries 97
access path details e 69
arrays ¢ 107
format entries ® 77

130 Building Access Paths

physical file format entries » 77
ELM context e 102
entry ¢ 77
Extended by relation ¢ 83

F

F4 prompt ¢ 36, 91
function ¢ 91
YCUAPMT model value ¢ 36
FCFO » 70, 110
FIFO ¢ 70, 110
file and access path relations « 84
file-to-file relation * 79
format ¢ 77
format entries » 23, 77
format keys ¢ 75
format text e 75
function e 50
changing name ¢ 50
function key ¢ 51
defaults « 51
function name ¢ 50
changing ¢ 50
function option e 42

DDS PUTOVR keyword (YPUTOVR) ¢ 42

function references ¢ 107
functional text 115

G

generation e 25,109, 112
objects ¢ 25, 109

generation mode ¢ 30, 31, 69, 73
changing ¢ 31
options ¢ 73

generation options ¢ 109

H

held access paths ¢ 80

Help text 39, 40, 41, 48
cursor-sensitive (YHLPCSR) » 40
generation (YGENHLP) « 39
UIM generation (YNPTHLP) ¢ 41
UIM model values ¢ 48

hidden fields 63, 80

high level language (HLL) * 39, 109
default (YHLLGEN) « 39
source code ¢ 109

HLL » 39, 109

high level language (HLL) ¢ 39, 109
holding * 62

I

i OS access path » 71
i OS index ¢ 109
I/O * 86, 125, 126
IBMsarchitecturalframework' ¢ 66
identifying 17, 75
format keys ¢ 75
format text e 75
immediate maintenance ¢ 67
implementation attributes ¢ 69, 110
SQL-generated RSQ ¢ 110
table » 69
input fields * 63
input/output * 86, 126
item master file » 118

J
join logicals ¢ 117, 125
K

key sequence ¢ 56, 76

L

LIFO 70, 110

locks ® 65
permanent ¢ 65
temporary ¢ 65

M

maintenance ¢ 117, 121, 124
dynamic ¢ 124
select/omit » 124
statice 124
maintenance options ¢ 71, 110, 121
De71
delay » 71
le71
immediate 71
Re71
rebuild e 71
master files ¢ 118
MDLVAL » 31
message ® 35, 42,45
Copy Back (YCPYMSG) e 35

Index 131

device prompt file (YPMTMSF) e 42
when to send (YSNDMSG) ¢ 45

minimizing number ¢ 118

active indices » 118

model values e 25, 28, 34, 35, 36, 37, 38, 39, 40, 41,

42,43, 44, 45, 48, 49, 50, 61, 73
changing ¢ 28
changing function level ¢ 49
changing model level ¢ 50
comments in source code (YGENCMT) e 39
CUA prompt ¢ 36
F4 prompting ¢ 36
last used file prefix (YFILPFX) e 25
prompting (F4) * 36
YABRNPT e 34
YACTCND 34
YACTFUN ¢ 34
YACTSYM e 34
YACTUPD e 35
YALCVNM e 25, 35
YBNDDIR ¢ 35
YCNFVAL ¢ 35
YCPYMSG ¢ 35
YCRTENV ¢ 36
YCUAEXT e 36
YCUAPMT e 36
YCUTOFF e 37
YDATFMT e 37
YDATGEN e 37
YDBFGEN e 25, 37
YDFTCTX ¢ 38
YERRRTN e 38
YEXCENV e 38
YFILPFX e 25
YGENCMT e 39
YGENHLP « 39
YGENRDB e 39
YHLLGEN e 39
YHLLVNM e 39
YHLPCSR ¢ 40
YLSHFLL » 40
YNLLUPD e 41
YNPTHLP ¢ 41
YOBJPFX ¢ 25,41
YPMTGEN e 42
YPMTMSF e 42
YPUTOVR e 42
YRP4HS2 « 43
YRP4HSP ¢ 43

YRP4SGN e 43
YSAAFMT e 44
YSFLEND e 44
YSHRSBR ¢ 44
YSNDMSG e 45
YSQLLIB ¢ 25
YUIMBID e« 48
YUIMEMT e 48
YUIMIDX e 48
YWBDATR ¢ 49
YWBDCHR ¢ 49
YWBDCLR ¢ 49
modifying * 61, 67, 75, 79, 82, 94
access path auxiliaries ¢ 94
access path details » 67
access path format entries 75
access path relations ¢ 79
access paths ¢ 61
virtual field entries ¢ 82
multi-format » 117, 126

N

naming e 23, 35, 39, 41
automatic (ALCVNM) e 35
new functions (YHLLVNM) ¢ 39
prefix (YOBJPFX) o 41
narrative text e 24
non-volatile e 118
null update suppression ¢ 41

0

objects ¢ 25
prefixes e 25
ODP « 117,126
sharing » 126
omit set ¢ 87
open data path (ODP) » 117, 126
Open Query File (OPNQRYF) ¢ 57,67, 71, 94, 110,
122
operational text e 115
ORed e 87

P

parameters ¢ 30, 32, 115
PRTTEXT e 115
SQLLIB « 30

performance considerations ¢ 117
access paths ¢ 117

132 Building Access Paths

permanent locks e 65
PHY (physical) access path ¢ 18, 55, 56
physical file ¢ 77, 118
format entries ¢ 77
types of data » 118
programmer user type (*PGMR) 101, 102
arrays « 101, 102
prompting (F4) ¢ 36

Q

QCASE256 ¢ 72
QRY (query) access path e 21, 29, 55, 57, 67, 71, 94,
110, 122
adding ¢ 57
auxiliaries » 29
QSYSTRNTBL ¢ 72
query (QRY) access path ¢ 29, 67, 71, 94, 110, 122

R

rebuild maintenance » 67, 121
referenced access path 91
Refers to relation ¢ 79
relation 23,79, 125
file-to-file » 79
required relations ¢ 79
retrieve condition ¢ 36
right-hand side text * 36
YCUAEXT model value * 36
RPG ¢ 38
error handling (*PSSR) ¢ 38
RSQ (resequence) access path 20, 55, 56, 110, 112
adding ¢ 56
RTV (retrieval) access path ¢ 19, 55
RTVOBIJ » 102

S

select/omit ¢ 69, 72, 86, 87, 117, 124
criteria ® 69, 72, 86
maintenance ¢ 124
sets e 87
static e 72

Services Menu ¢ 116
Display Services Menu ¢ 116

sharing active indices 119

source generation type ¢ 25

source member name ¢ 28, 69

source member text ¢ 69

SPN (span) access path e 22, 55, 58

adding ¢ 58

sSQL e« 25, 30, 73, 74, 109, 110, 112
access path 110
copying ¢ 74
creating an environment e 30
environment ¢ 30
implementation ¢ 110
joins e 74
resequence (RSQ) access path ¢ 110
SQLLIB model value » 25

static selection ¢ 124

Synon/2E index ¢ 109

T

table files » 118
tailoring for performance ¢ 86, 117
tailoring virtual fields ¢ 86
temporary locks ¢ 65
translate table ¢ 72
type of maintenance ¢ 71
types of access paths ¢ 17, 18, 19, 20, 21, 22, 55
physical ¢ 18, 55
query ¢ 21,55
resequence ¢ 20, 55
retrieval ® 19, 55
span e 22,55
update ¢ 18, 55
types of data » 117, 118

u

UIM e 48
unique/duplicate key sequence ¢ 69, 70
options e 70
UPD (update) access path e 18, 55
UPD (update) physical path ¢ 18
update suppression ¢ 41
null update suppression ¢ 41
upper/lower case discrepancies ¢ 72
usages ¢ 65, 100
impact analysis ¢ 100
User Interface Manager (UIM) ¢ 48
user-added text ¢ 24

Vv

virtual fields ¢ 62, 64, 82, 86, 117
auto add to access path ¢ 62
entries ¢ 82

volatile ¢ 118

Index 133

W

windows ¢ 49
border model values ¢ 49

Y

YALCVNM (Allocate Name) model value ¢ 25
YCHGMDLVAL (Change Model Value) ¢ 25
YCPYMDLOBIJ (Copy Model Object) » 74
SQL access path ¢ 74

YCRTMDLLIB (Create Model Library) ¢ 30
YCRTSQLLIB (Create SQL Library) e 30
YDBFGEN (Database Generation) model value ¢ 25,

30
YFILPFX (last used file prefix) model value ¢ 25
YGENCMT model value ¢ 39
YOBIPFX (Object Prefix) » 25
YSAAFMT model value * 44
YSQLLIB (SQL Library) model value 25

134 Building Access Paths

	CA 2E Building Access Paths
	Contact CA Technologies
	Documentation Changes
	Contents
	1: Introduction to Access Paths
	Purpose
	Organization
	Contents
	Related Information
	Acronyms and Terms Used in this Guide
	Acronyms
	Values

	Understanding Access Paths
	Recognizing the Basic Properties of Access Paths
	Identifying Access Path Types
	Physical (PHY) Access Path
	Examples
	Update (UPD) Access Path
	Examples
	Retrieval (RTV) Access Path
	Examples
	Resequence (RSQ) Access Path
	New Topic
	Query (QRY) Access Path
	Span (SPN) Access Path
	Example
	Characteristics of Access Paths
	Naming Access Paths

	Recognizing Access Path Components
	Access Path Details
	Access Path Format Entries
	Access Path Relations
	Access Path Auxiliaries

	Narrative Text
	Understanding Generator Types
	Model Values
	Changing Values
	Allocating Names
	Allocating a Source Member Name for an Access Path
	Controlling Auxiliary Names
	Creating an SQL Environment
	Specifying Generation Mode
	Changing the Generation Mode at the Access Path Level

	Changing Compiler Overrides

	2: Setting Default Options for Your Functions
	Model Values Used in Building Functions
	YABRNPT
	YACTCND
	YACTFUN
	YACTSYM
	YACTUPD
	YALCVNM
	YBNDDIR
	YCNFVAL
	YCPYMSG
	YCRTENV
	YCUAEXT
	YCUAPMT
	YCUTOFF
	YDATFMT
	YDATGEN
	YDBFGEN
	YDDLDBA
	YDFTCTX
	YDSTFIO
	YERRRTN
	YEXCENV
	YGENCMT
	YGENHLP
	YGENRDB
	YHLLGEN
	YHLLVNM
	YHLPCSR
	YLHSFLL
	YLVLCHK
	YNPTHLP
	YNLLUPD
	YOBJPFX
	YPMTGEN
	YPMTMSF
	YPUTOVR
	YRP4HSP
	YRFSACT
	YRP4HS2
	YRP4SGN
	YSAAFMT
	YSFLEND
	YSHRSBR
	YSNDMSG
	YSQLCOL
	YSQLFMT
	YSQLLCK
	YSQLVNM
	YSQLWHR
	YWSNGEN
	User Interface Manager (UIM)
	Window Borders

	Changing Model Values
	Function Level
	Model Level

	Changing a Function Name
	Function Key Defaults

	3: Adding Access Paths
	Before Adding
	Edit File Details
	Adding an Access Path
	Adding a Physical (PHY) Access Path
	Adding a Resequence (RSQ) Access Path
	Adding a Query (QRY) Access Path
	Adding a Span (SPN) Access Path

	4: Modifying Access Paths
	Before You Begin
	Before Modifying
	Navigational Techniques and Aids
	Automatic Add Options
	Changing the Auto Add Setting
	Trimming an Access Path
	Virtualizing an Access Path
	Locking an Access Path
	Temporary Locks
	Permanent Locks
	Displaying Usages for Access Paths

	Building Distributed Relational Database Applications
	Specifying Distributed Files

	Modifying Access Path Details
	Editing Access Path Details
	Specifying Unique/Duplicate Key Retrieval Sequence
	Specifying Access Path Maintenance
	Specifying Alternate Collating Sequence
	Specifying Select/Omit Criteria
	Specifying Generation Mode
	SQL and DDS Joins
	Copying an Access Path Generated with SQL or DDL
	Changing Source Member Text and Names

	Modifying Access Path Format Entries
	Identifying Access Path Format Text
	Identifying Access Path Format Keys
	Changing the Key Sequence
	Editing Access Path Format Entries
	Editing Physical File Format Entries
	Altering Field Sequence or Implementation Name

	Modifying Access Path Relations
	Understanding Required Relations
	Adding Relations to a File
	Editing Access Path Relations

	Modifying Virtual Field Entries
	Understanding Access Path Virtual Field Entries
	Identifying Relations with Virtual Fields
	Specifying File and Access Path Relations
	Editing Virtual Field Entries
	Tailoring Virtual Fields for Access Paths

	Choosing Select/Omit Criteria
	Understanding Select/Omit
	Specifying Selection
	Specifying Conditions
	Select/Omit in DDL Index

	Changing a Referenced Access Path
	F4 Prompt Function Assignment

	Modifying Access Path Auxiliaries
	Understanding Access Path Auxiliaries
	For DDS Query (QRY) Access Paths
	For SQL Access Paths with *IMMED Maintenance
	For DDL Access Paths with *IMMED Maintenance
	Editing Access Path Auxiliaries

	5: Deleting Access Paths
	Deleting an Access Path
	Determining the Usage of an Access Path

	6: Defining Arrays
	Understanding Arrays
	Structuring Field Data Using Arrays
	Passing Parameters
	Storing Data Between Calls

	Defining an Array
	Editing an Array
	Viewing Function References
	Changing the Name of an Array

	Deleting an Array

	7: Generating and Compiling
	Implementing
	i OS Index Versus CA 2E Index
	Setting Your Options
	Changing Compiler Overrides from DDS to SQL or DDL
	Identifying the Implementation Attributes
	Generating an Access Path

	8: Documenting Access Paths
	Documenting an Access Path
	Creating the Documentation

	9: Tailoring for Performance
	Considering the Types of Data in the Physical File
	Minimizing the Number of Active Indexes
	The Active Index
	Sharing Active Indexes

	Access Path Maintenance (Immediate, Delay, or Rebuild)
	Maintenance for Query (QRY) Access Paths

	Using Select/Omit Maintenance
	Using Join Logicals
	Using Multi-Format Access Paths
	Using Open Data Paths
	Creating Default Retrieval Access Paths

	Index

